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Abstract—The Adolescent Brain Cognitive Develop-
ment® (ABCD) Study provides a unique opportunity to
investigate developmental processes in a large, diverse
cohort of youths, aged approximately 9-10 at baseline
and assessed annually for 10 years. Given the size and
complexity of the ABCD Study, researchers analyzing its
data will encounter a myriad of methodological and an-
alytical considerations. This review provides an exam-
ination of key concepts and techniques related to lon-
gitudinal analyses of the ABCD Study data, including:
1) characterization of the factors associated with vari-
ation in developmental trajectories; 2) assessment of
how level and timing of exposures may impact subse-
quent development; 3) quantification of how variation
in developmental domains may be associated with out-
comes, including mediation models and reciprocal re-
lationships. We emphasize the importance of selecting
appropriate statistical models to address these research
questions. By presenting the advantages and potential
challenges of longitudinal analyses in the ABCD Study,
this review seeks to equip researchers with foundational
knowledge and tools to make informed decisions as they
navigate and effectively analyze and interpret the multi-
dimensional longitudinal data currently available.

Index terms—Longitudinal Analysis, ABCD Study,
Development

I. Introduction

The Adolescent Brain Cognitive Development (ABCD)
Study® is the largest longitudinal investigation of neurode-
velopment and child health in the United States. Conceived
and initiated by the National Institutes of Health (NIH), this
landmark prospective longitudinal study aims to transform
our understanding of the genetic and environmental factors
impacting neurodevelopment and their roles in behavioral
and health outcomes across ten years of adolescence [1]. At
its heart, the study is designed to chart the course of human
development across multiple interacting domains from late
childhood to early adulthood and to identify factors that lead
to both positive and negative outcomes. Central to achieving
these goals is the commitment of the ABCD Study and its NIH
funders to an open science framework, intended to facilitate
sharing of data and analytical methods by espousing practices
that increase access, integrity, and reproducibility of scientific
research. In this context, the ABCD Study is a collaboration
with the broader research community.

The size and scope of the ABCD Study data allow the re-
search community to perform a large variety of developmental
analyses of both substantive and methodological interest, pre-
senting a unique opportunity to significantly advance our un-
derstanding of how a multitude of biopsychosocial processes
unfold across critical periods of development. In this paper,
we describe models and methods for longitudinal analysis of
ABCD Study data that can address these fundamental scien-
tific aims, including: 1) characterization of the genetic and
environmental factors associated with variation in develop-
mental trajectories; 2) assessment of how the level and tim-
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ing of exposures may impact subsequent neurodevelopment;
3) quantification of how variation in developmental domains
may be associated with outcomes, including mediation models
and reciprocal relationships. We instantiate these longitudinal
analyses in worked examples using the ABCD Release 5.1 data
with accompanying R scripts. Worked examples are available
in Quarto files, accessible in the project’s GitHub repository.
A. The ABCD Study Data

The ABCD Study enrolled a cohort of n=11,880 participants
born between 2006-2008 and aged approximately 9-10 years
at baseline, each with a parent/guardian. The study sample
was recruited from households in defined catchment areas for
each of the 21 (originally 22) study sites across the United
States. Information regarding funding agencies, recruitment
sites, investigators, and project organizations can be obtained
at https://abcdstudy.org. The ABCD Study design is described
in more detail in [2] and [3].

The ABCD Study is currently collecting longitudinal data on
a rich variety of outcomes that will enable the construction of
complex statistical models, potentially incorporating factors
from many domains. Each new wave of data collection pro-
vides another building block for characterizing developmen-
tal trajectories and implementing longitudinal analyses that
allow researchers to characterize normative development, to
identify variables that presage deviations from normative de-
velopment, and to assess a range of variables associated with
biopsychosocial outcomes of interest. These data include: 1) a
neurocognitive battery [4]; [5]; 2) mental and physical health
assessments [6]; 3) measures of culture and environment [7];
[8]; 4) substance use [9]; 5) gender identity and sexual health
[10]; 6) biospecimens [11]; 7) structural and functional brain
imaging [12]; [13]; [14]; 8) geolocation-based environmental
exposure data [15]; 9) wearables and mobile technology [16];
and 10) whole-genome genotyping [17]. Many of these mea-
sures are collected at in-person annual visits, with brain imag-
ing collected at baseline and every other year going forward.
A limited number of assessments are collected in semi-annual
brief telephone or online assessments.

Data are publicly released approximately annually, cur-
rently through the NIMH Data Archive (NDA). The study’s
earliest data releases consisted primarily of one or two visits
per participant. However, the most recent public release as of
the writing of this paper (Release 5.1) contains data collected
across five annual visits, including three brain imaging assess-
ments (baseline, year 2 follow-up, and year 4 follow-up visits)
for at least a subset of the cohort. Hence, starting with Release
5.0, it is feasible for researchers to begin focusing on the char-
acterization of neurodevelopmental and other trajectories.
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II. Developmental Research

A. Basic Concepts and Considerations

There are several important concepts to consider when
conducting longitudinal analyses in a developmental context.
These include different ways of thinking about the develop-
mental course, whether certain periods of development are
relatively sensitive or insensitive to various types of insults or
stressors, whether some time periods or situations inhibit the
expression of individual differences due to extreme environ-
mental pressures, and whether the same behavior manifested
at different times represents the same or different phenomena.

Moreover, in the case of developmentally-focused longitu-
dinal research, each new measurement occasion not only pro-
vides a more extended portrait of the child’s life course but
also brings with it greater methodological opportunities to
make use of statistical models that distinguish within- from
between-person effects and that loosen constraints that need
to be imposed on the furtherance of critical scientific ques-
tions.

For example, collecting two or more within-person observa-
tions on the same construct at different times enables estima-
tion of individual rates of change (slopes) where more obser-
vations allow for more precise estimates of individual slopes
(random slopes), as well as characterization of non-linear de-
velopment. Rate of change or other trajectory characteristics
may be more informative about individuals than the simple
snapshots of level differences that cross-sectional data are
limited to informing about. Cross-sectional age-related differ-
ences across individuals are poor substitutes for longitudinal
trajectory estimates, except under highly restrictive assump-
tions, e.g., parallel trajectories and lack of age, cohort and ex-
perience effects [18]. Appreciation of these and other issues
can help to guide the analysis and interpretation of data and
aid translation to clinical and public health applications.

https://quarto.org/
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1) Vulnerable periods.: Adolescent development progresses
normatively from less mature to more mature levels of func-
tioning. However, unique epochs and experiences can alter
the course of this idealized form of development. Consider re-
search that shows cannabis use during adolescence is associ-
ated with later psychosis to a greater degree than cannabis use
initiated later in development [19]; [20]; [21]; [22]. Similarly,
rodent brains are especially sensitive to the neurotoxic effects
of alcohol on brain structure and learning early in develop-
ment, corresponding to early adolescence in humans [23];
[24]; [25]. In another example, longitudinal data from the Na-
tional Consortium on Alcohol and Neurodevelopment in Ado-
lescence (NCANDA) show that binge drinking is associated
more strongly with decrements in gray matter volume early in
adolescence compared to later [26]. These examples highlight
the importance of considering the role of vulnerable periods –
e.g., temporal windows of rapid brain development or remod-
eling during which the effects of environmental stimuli on the
developing brain may be particularly pronounced– when try-
ing to establish an accurate understanding of the association
between exposures and outcomes.

2) Developmental disturbances.: Whereas vulnerable periods
heighten neurobiological susceptibility to environmental in-
fluences, at other times, environmental exposures will tend to
suppress stability and disrupt the orderly stochastic process
of normative development (e.g., [27]). This situation reflects a
developmental disturbance in that the normal course of devel-
opment is “altered” for a time by some time-limited process.
In such cases, we might find that prediction of behavior in the
period of the disturbance is reduced and/or, similarly, the be-
havior exhibited during the disturbance might have less pre-
dictive power with respect to distal outcomes compared to the
behavior exhibited before and following the disrupted period.
That is, once the environmental pressures are removed (or the
individual is removed from the environment), patterns of indi-
vidual differences (and autoregressive effects) recover to levels
similar to those prior to entering the environment.

3) Developmental snares and cascade effects.: Normative de-
velopment can also be upended by experiences (e.g., drug use)
that, through various mechanisms, disrupt the normal flow
of development wherein each stage establishes a platform for
the next. For instance, substance use could lead to association
with deviant peers, precluding opportunities for learning var-
ious adaptive skills and prosocial behaviors, in effect creating
a “snare” that delays psychosocial development, such as ma-
turing out of adolescent antisocial behavior [28]. Relatedly,
the consequences of these types of events can cascade (e.g.,
school dropout, involvement in the criminal justice system)
so that the effects of the snare are amplified (e.g., [29]; [30]).
Although conceptually distinct from vulnerable periods, both
types of developmental considerations highlight the impor-

tance of viewing behavior in the context of development and
attempting to determine how various developmental path-
ways unfold. Longitudinal data are crucial in this context to
assess individual levels of development prior to and following
onset of experiences or other environmental factors (e.g., the
ABCD Study collected data starting at ages 9-10 and hence
before the onset of substance use for the vast majority of par-
ticipants).

4) Mediational Processes.: Questions regarding the biological
mechanisms whereby exposures impact outcomes can often
be framed in terms of mediation analyses [31]; [32]. Media-
tion analyses can be implemented using the causal steps ap-
proach [33] and structural equation models (SEM) [34]. More
recently, mediation models have been adapted for longitudi-
nal exposures, mediators, and/or outcomes [35]; [36]. All of
these modeling approaches decompose the total effects of an
exposure on an outcome into direct and indirect effects, where
indirect effects of an exposure flow through its impact on a
mediating process. [36] details conditions under which the di-
rect and indirect causal effects can be in a longitudinal setting.
An important example of mediational analyses in the ABCD
Study is the impact of exposures on behavioral outcomes (e.g.,
neurocognition, mental health, substance use) via their impact
on the brain, as quantified by imaging-derived phenotypes
(IDPs). Methods for mediational analyses using multi-dimen-
sional IDPs have been developed and applied to functional
MRI data [37]; [38].

III. Longitudinal Data

A. Considerations and Challenges

The hallmark characteristic of longitudinal data analysis
(LDA) is the administration of repeated measurements of the
same constructs on assessment targets (e.g., individuals, fam-
ilies) across time. The primary rationale for collecting longi-
tudinal data is to assess within-person change over time, al-
lowing researchers to estimate individual developmental tra-
jectories and the genetic and person-level factors that may im-
pact these trajectories. Administering repeated measurements
more frequently or over longer periods enables researchers to
ask more nuanced questions and to make stronger inferences.

1) Two Time Points versus Three or More.: Although the clear
leap from cross-sectional to the realm of longitudinal data in-
volves going from one assessment to two or more assessments,
there are also notable distinctions in designs based on two-as-
sessment points versus three or more measurement occasions.
Just as cross-sectional data can be informative in some situa-
tions, two waves of data can be beneficial in contexts such as
when an exposure is involved (e.g., pre/post tests), or if the
central goal is prediction (e.g., trying to predict scores on Vari-
able A at time T as a function of prior scores on Variable A



and Variable B at time T-1). At the same time, analyses of data
based on two assessments are inherently limited on multiple
fronts. As [39] noted over forty years ago, “Two waves of data
are better than one, but maybe not much better” (p. 744).

These sentiments are reflected in more contemporary rec-
ommendations regarding best-practice guidelines for prospec-
tive data, which increasingly emphasize the benefits of ad-
ditional measurement occasions for trajectory estimation,
model identification and accurate parameter inferences. This
is also consistent with recommendations that developmental
studies include three or more assessment points, given it is
impossible for data based on two-time points to determine the
shape of development (given that linear change is the only es-
timable form for two assessment waves; (see [40]). Research
designs that include three (but preferably more) time points
allow for non-linear trajectory estimation and increasingly
nuanced analyses that more adequately tease apart sources
of variation and covariation among the repeated assessments
[41]– a key aspect of developmental research.

To illustrate, developmental theories are useful for under-
standing patterns of within-individual change over time (dis-
cussed in further detail, below); however, two data points pro-
vide meager information on change at the person level. This
point is further underscored in a recent review of statistical
models commonly touted as distinguishing within-individual
vs between-individual sources of variance in which the study
authors concluded “… researchers are limited when attempt-
ing to differentiate these sources of variation in psychologi-
cal phenomenon when using two waves of data” and perhaps
more concerning, “…the models discussed here do not offer a
feasible way to overcome these inherent limitations” [42]. It
is important to note, however, that despite the current focus
on two-wave designs versus three or more assessment waves,
garnering three assessment points is not a panacea for longi-
tudinal modeling. Indeed, several contemporary longitudinal
models designed to isolate within-individual variability (e.g.,
the Latent Curve Model with Structured Residuals [LCM: SR];
[43]) require at least four assessments to parameterize fully
and, more generally, increasingly accurate and nuanced para-
meter estimates are obtained as more assessment occasions
are used [40].

2) Types of stability and change: If one were to try to sum
up what developmental trajectories in a living organism are
exactly, one could plausibly argue they are the patterns of sta-
bility and change in its phenotypes as the organism traverses
the life course. Symbolically, developmental trajectories can
be expressed as fi(t), a possibly multivariate function of time
t, specific to the ith individual and typically taking values in
the real numbers for continuous phenotypes and the integers
for discrete phenotypes. Ideally, t is a biologically meaning-
ful temporal index (e.g., calendar age) as opposed to an ex-

ogenous progression of events (e.g., study visit number). Prop-
erties of interest might include rate of change over time, de-
gree of smoothness (e.g., continuously differentiable), shape
(e.g., polynomial or asymptotic behavior), how and how much
f(t) differs across individuals, and what factors predict either
within-individual variation (at different times) or between-in-
dividual variation (either overall or at specific times).

There are a few different ways to think about patterns of
stability and change (see Figure 1). Consider measuring school
disengagement at the start of middle school and the end of
middle school. A common first step may be to compare sixth
graders’ average disengagement values and eighth graders’
disengagement values. This comparison of the average scores
for the same group of individuals at multiple time points is
referred to as “mean-level”, as it provides information about
change over time (or lack thereof) for an outcome of interest
aggregated across members of a group. In contrast, “between-
individual” stability could be assessed, e.g., by calculating the
Spearman correlation between the values obtained at different
time points (e.g., ‘disengagement in sixth grade’ with ’disen-
gagement in eighth grade). This analysis focuses on the degree
to which individuals retain their relative placement in a group
across time. Consider someone who reported the lowest fre-
quencies of disengagement in 6th grade and may report sig-
nificantly higher disengagement over middle school (i.e., ex-
hibit high levels of change), but report the lowest frequencies
of disengagement in eighth grade. That is, the individual is
manifesting rank-order stability, even in the context of high
mean-level change.

Both types of stability and change are important. Mean-
level change in certain traits might help to explain why, in
general, populations of individuals tend to be particularly vul-
nerable to the effects of environmental factors in specific age
ranges; rank-order stability might help to quantify the extent
to which certain characteristics of the individual are more or
less trait-like compared to others. For example, in some areas
of development, considerable mean-level change occurs over
time (e.g., changes in Big 5 personality traits [44], but exhibit
relatively high rank-order stability, at least over shorter mea-
surement intervals [44]; [45]; [46].

Despite the useful information afforded by examining
mean-level and rank-order stability and change, these ap-
proaches are limited in that they provide little information
about the overall patterns of within-individual change and, in
turn, can result in fundamental misinterpretations about sub-
stantial or meaningful changes in an outcome of interest [47].
For example, questions related to the impact of early-onset
substance use on brain development focus on changes within
a given individual (i.e., intraindividual differences). The ABCD
Study will provide researchers with over ten time points for
certain constructs (e.g., substance use) across a ten-year pe-



riod, allowing for a detailed study of some within-person
processes.

Figure 1:  Types of Stability and Change

3) Use of appropriate longitudinal models: There is growing
recognition that statistical models commonly applied to lon-
gitudinal data often fail to align with the developmental the-
ory they are being used to assess (e.g., [47]; [48]; [42]). First,
developmental studies typically involve the use of prospec-
tive data to inform theories that are concerned with clear
within-person processes (e.g., how phenotypes change or re-
main stable within individuals over time, (e.g., [47])). Despite
this, methods generally unsuited for disaggregating between-
and within-person effects (e.g., cross-lagged panel models
[CLPM]) remain common within various extant literatures.
Fortunately, there exists a range of models that have been
proposed to tease apart between- and within-person sources
of variance across time (see [42]; [49]). Most of these contem-
porary alternatives incorporate time-specific latent variables
to capture between-person sources of variance and model
within-person deviations around an individual’s mean (or
trait) level across time (e.g., random-intercept cross-lagged
panel model [RI-CLPM], [50]); latent curve models with struc-
tured residuals [LCM-SR], [43]). It is important to note how-
ever that these models require multiple assessments waves
(e.g., four or more to fully specify the LCM-SR), additional ex-
pertise to overcome issues with model convergence, and ap-
preciation of modeling assumptions when attempting to adju-
dicate among potential models in each research context (see
[42], for further discussion).

Second, many statistical models assume certain character-
istics about the data to which they are being applied. Com-
mon assumptions of parametric statistical models (e.g., linear
mixed-effects models) include normality and equality of vari-
ances. These assumptions should be carefully considered be-
fore finalizing analytical approaches, so that valid inferences
can be made from the data, as violation of a model’s assump-
tions can substantively invalidate the interpretation of results.

For example, longitudinal data can exhibit heterogeneous vari-
ability (i.e., the variance of the response changes over the du-
ration of the study) that may need to be accounted for within
a model. Another pertinent modeling assumption is whether
trajectories are linear or non-linear. With two or three assess-
ments per individual, usually only a linear model of within-
person change is feasible.

As the study progresses and more time points are as-
sessed, the potentially nonlinear aspects of trajectories can
be assessed, for example using quadratic functions of time.
Methods that make even fewer assumptions about trajectory
shapes, such as nonparametric curve estimation at the mean
(e.g., Generalized Additive Mixed Models [GAMMs]; [51]) and
at the individual level (e.g., Functional Data Analysis [FDA];
[52]) may also become useful. Note, baseline age in the ABCD
Study ranges over two full years; for some outcomes it may be
feasible to include a possibly nonlinear effect of baseline age
along with a linear effect of within-person change in age even
with only two or three assessment times [53].

4) Continuous and Discrete Outcomes: Repeated assessments
within the ABCD Study can be based on continuous or discrete
measures. Examples of discrete measures include repeated as-
sessments of binary variables (e.g., past 12-month alcohol use
disorder status measured across ten years), ordinal variables
(e.g., caregiver-reported items measuring emotional and be-
havioral concerns via the Child Behavior Checklist including
the categories of “Not True”, “Somewhat True”, and “Very
True”), and count variables (e.g., number of cigarettes smoked
per day). In many ways, the distributional assumptions of
indicators used in longitudinal designs mirror the decision
points and considerations when delineating across different
types of discrete outcome variables, a topic that spans entire
textbooks (e.g., see [54]). For example, the Mplus manual [55]
includes examples of a) censored and censored-inflated mod-
els, b) linear growth models for binary or ordinal variables, c)
linear growth models for a count outcome assuming a Pois-
son model, and d) linear growth models for a count outcome
assuming a zero-inflated Poisson model. Beyond these high-
lighted examples, other distributions (e.g., negative binomial)
can be assumed for the indicators when modeling longitudi-
nal data [56]. These models account for issues that may occur
when working with discrete outcomes, including overdisper-
sion, i.e., when the variance is higher than would be expected
based on a given parametric distribution (see [54]). Given the
sheer breadth of issues relevant to determining adequate mod-
els for discrete outcomes, it is not uncommon for texts on LDA
to only cover models and approaches that assume continuous
variables (e.g., [57]). However, some textbooks on categorical
data analysis provide more detailed coverage of the myriad
issues and modeling choices to consider when working with
discrete outcomes: [54], Chapter 11 for matched pair/two-as-



sessment designs; Chapter 12 for marginal and transitional
models for repeated designs, such as generalized estimating
equations, and Chapter 13 for random effects models for dis-
crete outcomes.

5) Issues in attributing longitudinal change to development: 
Systematic changes over time in a variable of interest are not
always attributable to development: various pitfalls with lon-
gitudinal data can complicate or even invalidate this conclu-
sion. For example, if data missingness or participant dropout
are related to the values of the outcome, changing sample com-
position as the study progresses can bias mean trajectory esti-
mates (we describe this in more detail in Section 3.1.7 below).
Another prerequisite for valid developmental interpretations
of longitudinal data is to establish whether a construct is mea-
sured consistently over time, i.e., longitudinal measurement
invariance [58]; [59]; [60]. Establishing longitudinal measure-
ment invariance ensures that change over time for a given
construct is attributable to individual development rather than
merely a measurement artifact. For instance, one study using
data from the ABCD Study [61] found differential item func-
tioning in two items from a brief delinquency measure, reveal-
ing significant bias in an arrest item across Black and White
youth. More specifically, Black youth were more likely to re-
port being arrested compared to White youth with similar
levels of delinquency. Prevalence rates of delinquent behav-
ior would have been severely biased if measurement invari-
ance had not been tested. Alternatively, [62] showed partially
strong to strong evidence of longitudinal measurement invari-
ance across broad externalizing dimensions in youth taking in
the ABCD Study, suggesting that changes observed over time
in these constructs were not due to systematic measurement
error, but likely reflect true developmental change.

Observed patterns of growth and decline often differ be-
tween cross-sectional vs. longitudinal effects [63] where sub-
jects gain increasing experience with the assessment with
each successive measurement occasion. Such experience ef-
fects on cognitive functioning have been demonstrated in ado-
lescent longitudinal samples similar to ABCD [64] and high-
light the need to consider these effects and address them an-
alytically. In the case of performance-based measures (e.g.,
matrix reasoning related to neurocognitive functioning; see
[63]), this can be due to “learning” the task from previous test
administrations (e.g., someone taking the test a second time
performs better than they did the first time simply as a func-
tion of having taken it before). Even in the case of non-per-
formance-based measures (e.g., levels of depression), where
one cannot easily make the argument that one has acquired
some task-specific skill through learning, it has been observed
that respondents tend to endorse lower levels on subsequent
assessments (e.g., [65]; [66]) and this phenomenon has been
well documented in research using structured diagnostic in-

terviews [67]. While it is typically assumed that individuals
are rescinding or telling us less information on follow-up in-
terviews, there is reason to suspect that in some cases the ini-
tial assessment may be artifactually elevated (see [68]).

Some longitudinal studies, e.g., accelerated longitudinal de-
signs (ALDs; [18]) are especially well suited for discovering
these effects and modeling them. While ABCD is not an ALD,
the variability in age (and grade in school) at the time of base-
line recruitment (approximately 9-10 years old) allows some
measures, collected every year, to be conceptualized as an ALD
(e.g., substance use; prosocial behavior; family conflict; screen
time). It is also possible that in later waves, analyses will al-
low for disaggregating the confounded effects of age and the
number of prior assessments. However, ABCD is fundamen-
tally a single-cohort, longitudinal design, wherein number of
prior assessments and age are mostly confounded, and for,
perhaps, most analyses, the possible influence of experience
effects needs to be kept in mind.

6) Modeling Covariance: A central issue for repeated mea-
surements on an individual is how to account for the corre-
lated nature of the data. Lack of independence of residuals
across time occurs for longitudinal data with repeated as-
sessments on individuals and in other situations with nested
data (e.g., visits nested within participants, children nested
within schools; siblings nested within families). Note, the
ABCD Study has multiple levels of nesting, depending on the
analysis, including within-participant, within-family, within-
school, within-MRI scanner, and within-site.

Statistical models for nested data include two main compo-
nents, coupling a model for the mean response and its depen-
dence on covariates with a model for the covariance among
repeated outcomes on an individual. In contrast, traditional
methods, such as multiple regression and ANOVAs, assume
residuals are independent and thus are generally inappropri-
ate for designs that incorporate some type of nesting. Specif-
ically, given that residuals are no longer independent in a re-
peated measures design, standard errors from these models
are biased and can produce misleading inferences. Therefore,
an initial question to be addressed by a researcher analyzing
prospective data is how to best model their covariance struc-
ture. A range of methods can be used to model covariance
structures, each with its own set of tradeoffs between model
fit and parsimony and which may be more or less appropriate
for each specific application (e.g., see [69]).

The most common approach is to use random effects. Essen-
tially, random effects allow for covariance estimates around
fixed effects. A classic example (from [70]; [71]) involves
math achievement measured among students nested within
schools. In a basic, intercept-only model with no covariates
(i.e., an unconditional growth model), there would be one fixed
effect (the grand mean, or intercept, of math achievement),



one school random effect (representing variation in the inter-
cept between schools) and the within-school student residuals
(variation left over after accounting for fixed and random ef-
fects). In this framework, each student’s score would be the
sum of the fixed effect (the grand mean), the school random
effect and the student’s within-school residual. Assumptions
about the variance and covariance components of this model
dictate the form of the variance/covariance structure. For ex-
ample, if we assume the random effects are independent and
identically distributed, the implied structure would be com-
pound symmetry, where it is assumed the covariance of any
two students in a single school is captured by a school random
intercept and the covariance of any two students in different
schools is zero. The assumptions of this relatively simple co-
variance structure can be relaxed depending on the nesting
structure of the data, resulting in different covariance struc-
tures with additional parameters (see [71]).

In longitudinal studies, visits are nested within individuals.
Mixed-effect models can be fitted to longitudinal data that cou-
ple a model for growth (development) at the mean level with
a model for capturing within-individual covariance of assess-
ments. For example, a linear growth model would involve two
fixed effects – one for the intercept (the average score when
time is coded zero) and one for the linear slope (the change in
scores for each unit increase in time). Random effects could in-
clude a random effect for intercept, capturing individual vari-
ation in scores at time zero, and a random effect for the linear
slope, capturing individual variation in linear change across
time. Within-individual residuals account for the remaining
variation in assessments after accounting for the fixed and
random intercepts and slopes. Assumptions regarding the co-
variation among the random effects also indicate different co-
variance structures. For example, it is typical to assume that
the random intercept and slope components covary, i.e., an in-
dividual’s score at time zero relates to the amount of change
exhibited across time. Further, particularly in structural equa-
tion model forms of this model, it is sometimes assumed that
the variance of the residuals varies across assessments [72].

An alternative to random effects is the autoregressive struc-
ture, which allows for correlations between repeated assess-
ments to diminish across time. As the name suggests, the
structure assumes the residual of a subsequent measurement
occasion (e.g., visit 2) is regressed onto the residual of a prior
measurement occasion (e.g., baseline visit). The most common
type of autoregressive structure is the AR(1), where residuals
at time t + 1 are regressed on residuals at time t. Identical to
compound symmetry, this model assumes the variances are
homogenous across time; however, it differs from compound
symmetry in that the correlations between repeated assess-
ments decline exponentially across visits rather than remain-
ing constant. That is, we can think of the underlying process as

a stochastic one that wears itself out over time. For example,
per the AR(1) structure, if the correlation between visit 1 and
visit 2 data is thought to be .5, then the correlation between
visit 1 and visit 3 data would be assumed to be .5 × .5 = .25,
and the correlation between visit 1 and visit 4 data would be
assumed to be .5 × .5 × .5 = .125. As with compound symmetry,
the basic AR(1) model is parsimonious in that it only requires
two parameters: the variance of the residuals and the autore-
gressive coefficient.

Notably, the assumption of constant autoregressive rela-
tions between assessments is often relaxed in commonly em-
ployed designs that use autoregressive modeling (e.g., CLPM).
These designs still typically assume an AR(1) process. How-
ever, the magnitude of these relations is often allowed to dif-
fer across different AR(1) pairs of assessment (e.g., the relation
between visit 1 and visit 2 can be different from the relation
between visit 2 and visit 3). These models also often relax the
assumption of equal variances of the repeated assessments.

Although the AR(1) structure may involve a more realistic
set of assumptions compared to compound symmetry, in that
the AR(1) model allows for diminishing correlations across
time, the basic AR(1) model, as well as autoregressive models
more generally, can also suffer from several limitations in con-
texts that are common in prospective designs. In particular,
recent work demonstrates that if a construct being assessed
prospectively across time is trait-like in nature, then a sim-
ple AR(1) process fail to adequately account for this trait-like
structure, with the downstream consequence that estimates
derived from models based on AR structures (such as the
CLPM) can be misleading and fail to adequately demarcate be-
tween- vs. within-person sources of variance [50]. Note also,
discrete-time autoregressive structures such as AR(1) implic-
itly assumes relatively constant time gaps between visits; this
may not be true in many applications using the ABCD Study
data.

7) Missing Data/Attrition: Attrition from a longitudinal
study such as ABCD is inevitable and represents a potential
threat to the external validity of analyses conducted at later
visits, especially since attrition can only be expected to grow
over time [73]. The ABCD Retention Workgroup employs a
data-driven approach to examine, track, and intervene in these
issues and while preliminary findings show participant race
and parent education level to be associated with late and miss-
ing visits, although to date, formal attrition in ABCD has been
minimal [74]. Ideally, one tries to minimize attrition through
good retention practices from the outset via strategies de-
signed to maintain engagement in the project [75]; [76]; [77].
However, even the best-executed studies need to anticipate
growing attrition over the length of the study and implement
analytic strategies designed to provide the most valid infer-
ences.



Perhaps the most key concern when dealing with data that
is missing due to attrition is determining the degree of bias
in retained variables that is a consequence of attrition. Such
bias can attenuate generalizability, particularly if the pattern
of missingness is not random (e.g., certain subsets of the popu-
lation are more likely to drop out/not attend a visit). Assuming
that the data are not missing completely at random, attention
to the nature of the missingness and employing techniques
designed to mitigate attrition-related biases need to be consid-
ered in all longitudinal analyses.

Three types of missingness are considered in the literature
[78]; [57], namely: a) missing completely at random (MCAR),
b) missing at random (MAR), and c) missing not at random
(MNAR). Data that are MCAR are a simple random sample
of all data in a given dataset. MAR implies missing data are
a random sample (i.e., does not hinge on some unmeasured
variables) within strata of the measured covariates in a dataset
(e.g., biological sex). Data that are MNAR are missing as a
function of unobserved variables and may bias associations
even after conditioning on the observed covariates. [79] pro-
vides an excellent and easy-to-digest overview of further de-
tails involving missing data considerations.

Modern approaches for handling missing data, such as full-
information maximum likelihood, propensity weighting, aux-
iliary variables and multiple imputation avoid the biases of
older approaches (see [80]; [79]). [79] noted several “myths”
regarding missing data. For example, Graham notes many as-
sume the data must be minimally MAR to permit estimating
procedures (such as maximum likelihood or multiple impu-
tation) compared to other, more traditional approaches (e.g.,
using only complete case data). Violations of MAR impact
both traditional and more modern data estimation procedures,
though as noted by Graham, violations of MAR tend to have
a greater effect on older methods. Graham thus suggests that
imputing missing data is a better approach compared to list-
wise deletion in most circumstances, regardless of the model
of missingness (i.e., MCAR, MAR, MNAR; see [79]; but also see
[81]). The ABCD Biostatistics Workgroup is currently imple-
menting several missing data approaches which are being im-
plemented and compared to each other (and listwise deletion)
in the 5.0 data release, including, propensity score weighting,
and multiple (multilevel) imputation.

8) Quantifying effect sizes longitudinally: Given that longi-
tudinal data involve multiple sources of variation, quantify-
ing effect sizes longitudinally is more complex compared to
deriving such estimates from cross-sectional data. An effect
size can be defined as, “a population parameter (estimated in
a sample) encapsulating the practical or clinical importance
of a phenomenon under study.” (Kraemer 2014). Common ef-
fect size metrics include the Pearson correlation r between two
variables and the standardized difference between two means,

Cohen’s d [82]. An extensive discussion of cross-sectional ef-
fect sizes and their relevance for ABCD is given in [3].

Adjustments to common effect size calculations, such as
Cohen’s d, are required even when only two time points are
considered (e.g., [83]). [84] note there are multiple approaches
to obtaining standardized within-person effects, and that com-
monly suggested approaches (e.g., global standardization) can
be problematic (see [84], for more details). Thus, obtaining ef-
fect size metrics based on standardized estimates that are rel-
atively simple in cross-sectional data (such as r) becomes more
complex in the context of prospective longitudinal data. [85]
noted that equations for effects sizes used in studies involv-
ing growth modeling analysis (e.g., latent growth curve mod-
eling) were not mathematically equivalent, and the effect sizes
were not in the same metric as effect sizes from cross-sectional
analysis (see [85], for more details).

Given this issue, there have been various proposals for ad-
justing effect size measures in repeated assessments. [86] re-
views the approach for effect size metrics for analyses based
on growth modeling, including when considering linear and
non-linear (e.g., quadratic) growth factors. [83] review various
equations for effect size calculations relevant to combining es-
timates in meta-analysis with repeated measures and indepen-
dent-groups designs. Other approaches to quantifying effect
sizes longitudinally may be based on standardized estimates
from models that more optimally disentangle between- and
within-person sources of variance. As an example, within a
random-intercept cross-lagged panel model (RI-CLPM) frame-
work, standardized estimates between random intercepts (i.e.,
the correlation between two random intercepts for two dif-
ferent constructs assessed repeatedly) could be used to index
the between-person relation, whereas standardized estimates
among the structured residuals could be used as informing the
effect sizes of within-person relationships.

9) Longitudinal Data Structures: An ideal longitudinal analy-
sis integrates (a) a well-articulated theoretical model, (b) an
appropriate longitudinal data structure, and (c) a statistical
model that is an operationalization of the theoretical model
[87]. To accommodate various research questions and con-
texts, different types of longitudinal data and data structures
have emerged (see Figure 1). An understanding of these data
structures is helpful, as they can warrant different types of
LDA. Given that identifying a starting point for making com-
parisons is somewhat arbitrary, Curran and [88] provide a nice
on-ramp in first distinguishing between the use of “time-to-
event” and “repeated measures” data. Although both model
time, the former is concerned with whether and when an event
occurs, whereas the later is focused on growth and change [88]
Time-to-event structures measure time from a well-defined
origin point up to the occurrence of an event of interest. This
data structure is most often analyzed using survival analysis



methods (e.g., hazard rate models, event history analysis, fail-
ure-time models and the time-to-event data can be based on a
single assessment or include multiple recurrent or competing
events). While much has been written about “time-to-event”
data [89]; [90], including a recent analysis examining exclu-
sionary discipline in schools using data from the ABCD Study
[61], our emphasis will be given to the modeling of “repeated
measures” data.

Link
When discussing longitudinal analysis, we are most often

talking about data collected on the same unit (e.g., individuals)
across multiple measurement occasions. However, repeated-
measures analysis is not a monolith, and it will serve us well
to distinguish between a few of the most common types. One
such approach to repeated measures analysis is the use of
time-series models. These models generally consist of a long
sequence of repeated measurements (≧ 50-100 measurements)
on a single or small number of variables of interest. Time-
series analysis is often used to predict temporal trends and
cyclic patterns and is geared toward making inferences about
prospective outcomes within a population (with relatively less
focus on inferring individual-level mechanisms and risk fac-
tors).

A related type of repeated measures analysis is Intensive
Longitudinal Data (ILD). Similar to time-series analysis, ILD
models involve frequent measurements (~ 30-40 measure-
ments) of the same individuals in a relatively circumspect pe-
riod (e.g., experience sampling to obtain time series on many
individuals). Although ILD models may include slightly fewer
measurement occasions than time-series data, ILD models
tend to have more subjects than time-series models (~ 50-100
subjects). This allows ILD models to examine short-term pat-
terns by incorporating a time series model that can sometimes
fit parameter estimates to each individual’s data to model in-
dividual difference outcomes.

The final type of repeated measures analysis that we will
primarily focus on is the longitudinal panel study. These mod-
els follow a group of individuals— a panel (also referred to as
a cohort) — across relatively fewer measurement occasions (~
5-15) and are often focused on examining both change within-
and between-individuals. The ABCD Study is primarily a lon-
gitudinal panel study, though some data streams (e.g., func-

tional brain imaging, FitBit data) could be analyzed as ILP or
even time series methods.

While other longitudinal designs have their own unique
strengths and applications, the longitudinal panel design
is particularly well-suited for investigating developmental
processes in the context of the ABCD Study. In the following
sections, we will discuss various analytic methods commonly
used to analyze longitudinal panel data, including growth
models, mixed models, and a number of additional trajectory
models. These methods provide valuable insights into within-
and between-individual differences and are highly relevant for
researchers working with the ABCD Study dataset. By focus-
ing on these methods, we aim to equip readers with the knowl-
edge necessary to conduct longitudinal research and perform
analyses using the rich, longitudinal, and publicly available
data from the ABCD Study.

IV. Longitudinal Analysis

1) Types of longitudinal panel models: With the large and
continually expanding body of research on statistical meth-
ods for longitudinal analyses, determining which longitudinal
model to implement can be challenging. This section aims to
help researchers navigate these many options to identify the
statistical approach most appropriate to their unique research
question when deciding on how to measure change over time.
Notably, there are a myriad of viable ways one can go about
grouping various types of longitudinal models for presenta-
tion.

Common examples include grouping by linear vs nonlin-
ear models [87], the number of measurement occasions [41],
and statistical equivalency (e.g., change scores vs. residualized
change; see [91]). The organization we use below overlaps in
several ways with these examples, and in particular with [88].
However, it is important to note that in each case, the cho-
sen way of grouping is primarily intended to allow the reader
to compare and contrast various analytical approaches. In the
following sections, we briefly summarize the advantages/dis-
advantages of a series of longitudinal models organized into
the following groupings: Traditional Models, Modern GLM
Extensions, Structural Equation Models (SEM), and Advanced
SEM (see Figure 2). We note that this is not an exhaustive re-
view of each of these methods, and for more in-depth detail
we do provide the reader with relevant resources. As aptly
summarized by [88], “…there are many exceptions, alterna-
tives, nuances, ‘what ifs’, and ’but couldn’t you’s that aren’t
addressed here.”

(https://centerstat.org/resources/)


Figure 2:  Longitudinal Models/Data Structures

Traditional Models :

Traditional methods for longitudinal analysis primarily focus
on modeling mean-level change, and how these changes may
differ across groups or levels of some other variable. For ex-
ample, is there a difference in average internalizing symptoms
obtained across multiple assessments between boys and girls?
Longitudinal models that focus on mean-level change are also
referred to as marginal models and examples of specific meth-
ods include repeated measures ANOVA, ANCOVA and Gener-
alized Estimating Equations (GEEs). Mean-level change mod-
els are commonly used when data are only available from 2
measurement occasions. For example, computing a difference
score (e.g., mean internalizing scores at visit 2 - mean inter-
nalizing scores at visit 1) that can be used as an outcome in a
subsequent GLM analysis (e.g., paired-samples t-test, repeated
measures ANOVA) to test for differences in patterns of change
over time and between groups. Additionally, the longitudinal
signed-rank test, a nonparametric alternative to the paired t-
test, can be a useful tool for analyzing non-normal paired data.
Another common approach, often used in pre-/post-design
studies but can be used with ABCD Study data, is to use resid-
ualized change score analysis to assess the degree of change
in a variable, while controlling for its initial level [91].

For example, to examine change in cortico-limbic connec-
tivity among ABCD participants, [92] regressed cortico-limbic
connectivity at the year 2 follow-up on baseline cortico-limbic
connectivity, which allowed the authors to examine the asso-
ciations between negative life events and the variance of cor-

tico-limbic connectivity unexplained by baseline connectivity.
Similarly, [93] used a residualized-change model to examine
the bidirectional influences of executive functioning and a
general psychopathology factor ‘p’ across the first two years
of the ABCD Study. Both studies were able to conclude asso-
ciations between their constructs of interest that could not be
accounted for by prior frequencies at baseline.

Traditional longitudinal models, such as residualized
change score models, can be useful in some contexts (e.g.,
two measurement occasions), but overall, their practical util-
ity for answering questions about developmental processes
is limited. Perhaps most notably, these models do not allow
for characterizing patterns of within-person change. This is
a particularly important limitation since most psychological
theories posit within-person processes (i.e., what will happen
within a given individual). As such, traditional approaches of-
ten correspond poorly with most theoretical models of change
and a failure to disaggregate between-person and within-per-
son effects can result in consequential errors of inference (e.g.,
ecological fallacy, [47]). Moreover, even determining which of
these procedures to use for comparing change over two time
points across groups can be surprisingly complicated. A par-
ticularly vexing example is that of imbalanced baseline scores
(i.e., when baseline scores are correlated with a covariate of in-
terest), which can produce different conclusions across meth-
ods (e.g., see [94], for a review). Given these shortcomings, and
the complexity of the issues surrounding some of these meth-
ods, it is typically recommended that researchers make use of
more modern approaches for analyzing longitudinal data and
preferably make use of data collected across three or more
time points, as is currently true for many ABCD Study assess-
ments.

Modern GLM Extensions :

Modern approaches to LDA have advanced beyond traditional
methods by offering greater flexibility and a more in-depth un-
derstanding of within-person and between-person variability.
Generalized Estimating Equations (GEE), Linear Mixed Mod-
els (LMM), Generalized Linear Mixed Models (GLMM), and
Autoregressive Cross-Lagged Panel Models (ARCL) are exam-
ples of such contemporary techniques. GEE, an extension of
Generalized Linear Models, combines the generalized linear
model for non-normal outcomes with repeated measures and
is suitable for analyzing correlated longitudinal data and mod-
eling population-averaged effects. For example, [95] used GEE
to obtain relative risks for psychiatric diagnoses among chil-
dren in the ABCD Study with a family history of depression
and used the ABCD Study sampling weights to generalize
prevalence rates among 9 and 10-year-olds across the US.

LMMs, also known as multilevel or hierarchical linear mod-
els, facilitate the simultaneous analysis of within-person and
between-person variability, making them ideal for nested data



structures or repeated measures. Within the ABCD Study, re-
searchers may want to consider nesting by individual, family
(i.e., siblings or twins), school or district, and/or site. GLMMs
further extend the LMM framework to accommodate non-
normal response variables, such as binary, count, or ordinal
data, such as the use of ABCD data on substance use (e.g., [96])
screen media use [97], and microstructure of the brain [14].

Finally, ARCL models are used to investigate reciprocal re-
lationships between variables over time, as they estimate both
autoregressive and cross-lagged effects, although ARCL mod-
els are relatively less useful for teasing apart between-person
and within-person sources of variances; see [98].

The strengths of these modern methods lie in their ability
to account for individual differences, within-person change,
and time-varying predictors, thereby providing a more com-
prehensive understanding of complex relationships in longi-
tudinal data. Despite these advantages, modern approaches
may require more complex modeling assumptions and higher
computational demands compared to traditional methods. Ad-
ditionally, proper model specification and the interpretation
of results can be more challenging, especially in cases of high
multicollinearity or missing data. However, modern longitu-
dinal analysis methods have generally surpassed traditional
methods in addressing a wider range of research questions,
accommodating diverse data structures, and elucidating the
intricate dynamics of developmental processes.

Structural Equation Modeling (SEM) :

Structural Equation Modeling (SEM) is a flexible modeling
framework that integrates elements of path analysis and con-
firmatory factor analysis (CFA) to examine complex relation-
ships between a set of observable variables and latent con-
structs [99]. The integration of structural (regression) and
measurement (CFA) components within a unified framework
supports a theory-driven approach that allows researchers to
rigorously test hypothesized relationships among variables
of interest and their underlying causes [99]; [100]. Over the
years, the flexibility of the SEM framework has evolved to be-
come particularly adept for modeling autoregressive processes
(which often assume underlying stationarity) and growth
processes which accommodate both, mean trajectories and in-
dividual differences in them [101]; [57].

Longitudinal SEM techniques share many similarities with
mixed-effects methods and research demonstrates their math-
ematical equivalence in many situations [72]; [102]. However,
these related approaches often cater to distinct theoretical and
analytical needs. For instance, mixed-effects techniques are an
extension of the regression framework and often excel when
working with complex data structures such as multiple lev-
els of nesting, small samples, and non-equidistant time points
[103]; [104]. Alternatively, applying SEM methods to longi-
tudinal analysis provides a flexible means for modeling the

underlying process of change. It also addresses several chal-
lenges faced by competing approaches, including the ability
to accommodate intricate error structures and deal effectively
with missing data, as well as the implementation of numerous
modeling extensions [103]; [98]. These models have grown in-
creasingly popular for modeling longitudinal outcomes partic-
ularly due to their ability to build statistical models that match
some particular underlying theory [105].

Considering the variety of available techniques, it can be
helpful to classify longitudinal SEM, broadly (if not coarsely),
into variable-centered, person-centered, and hybrid analyses,
each with unique strengths and limitations. Variable-centered
analyses (e.g., latent growth curves [72], latent change scores
[106], latent state-trait models [107]) are primarily concerned
with understanding covariation among variables at the group
level and characterizing population-level patterns of change,
while person-centered analyses (e.g., latent class and latent
transition models) identify distinct subgroups or patterns
within the data [108]; [109]; [110]. Hybrid models combine
these perspectives to offer a comprehensive analysis of latent
subgroups and growth parameter relationships [111]; [112].
The choice between these approaches is primarily driven by
the research question, data structure, and relevant underlying
assumptions.

Variable-centered models :

One key application of the SEM framework to the analysis of
longitudinal data is the latent growth curve model (LGCM).
This is a variable-centered approach that characterizes aver-
age group trajectories and individual variations (random ef-
fects) in an outcome over time [72]. These models are similar
to their linear mixed effects counterpart in many ways, with
the main conceptual difference being that LGCM includes a
repeatedly measured outcome in the model as a function of
time (closely resembling a standard CFA approach), rather
than as an explanatory variable (as in a standard regression ap-
proach) [103]. Specifically, observed scores at each time point
are treated as indicator variables with their factors loading
scaled to reflect a hypothesized pattern of change (e.g., load-
ings of 0, 1, and 2 would assume equidistant, linear change).
Latent intercepts (initial levels) and slopes (rates of change)
are estimated, along with their variances and covariance to
capture common trends and individual deviations over time.
This method was used in a recent study by [113] to show a
decreasing trajectory of parent-reported externalizing behav-
iors from ages 9-12 among youth taking part in the ABCD
Study. This study also examined hypothesized predictors of
the growth trajectory intercept and slope factors, highlighting
a particular strength of these models–– their flexibility and
extensibility. As an example, [114] used publicly available data
from the ABCD Study and several other large-scale datasets
to explore bivariate (parallel process) relationships between



white matter pathways and literacy over time. Beyond these
examples, LGCMs can be extended in numerous ways, includ-
ing to compare rates of growth across groups, investigate the
consequences of change, and incorporate time-invariant or
time-varying covariates, to highlight only a few (for a more
detailed treatment of LGCM applications and methodologies,
refer to [115]; [116]; [117]).

The latent change score model (LCSM) is a variable-cen-
tered approach uniquely tailored for analyzing temporal vari-
ations in how a construct changes over time [118]; [106]. These
models share many features with growth curve analysis, but
with a more explicit focus on how change occurs between
measurement occasions [105]; [101]. Specifically, LCSM esti-
mates a series of latent variables to model change in an out-
come from one time point to the next, as a function of scores
on that outcome at prior time points [106]; [119]. Some types
of LCSM estimate two underlying latent factors: a constant
change factor that remains fixed over time, and a proportional
change factor that adjusts for previous scores. By disaggre-
gating change into constant and proportional components,
this approach facilitates a more nuanced understanding of
whether prior changes in a given process are related to future
changes in the same process [105]; [120]. Expanding upon the
capabilities of this framework, LCSM also allows for compre-
hensive multivariate analyses that can facilitate investigations
into how change in one construct is associated with change
in another construct. The appeal of this approach is evidenced
by several recent studies that have used data from the ABCD
Study to explore bivariate associations between brain devel-
opment and changes in several mental and physical health in-
dicators [121]; [122]; [123]; [124]; [125].

Latent State-Trait Models (LSTM) offer another variable-
centered approach to longitudinal analysis that also allows
for the estimation of patterns of change over time. Unlike
LGCM, which conceptualizes change as a function of time,
and LCSM, which views change through sequential measure-
ments, this approach disaggregates observed behaviors into
distinct stable (trait) and occasion-specific (state) components
[126]; [127]. Based on LST theory [128]; [129], these models
hold that scores on a repeated measures outcome can be par-
titioned into an enduring latent trait variable that reflects be-
tween-individual differences, and a transient latent state resid-
ual that represents situational influences [130]; [107]. Beyond
parsing out these key variance components, LSTM can be ex-
tended in many ways, such as by incorporating autoregres-
sive effects to capture relative stability and the influence of
past states on future responses (i.e. carry-over effects; [131];
[132]; [107]). The merits of this approach are highlighted in
a recent review by [133] focused on strategies for modeling
neurobehavioral development. These study authors encourage
researchers to leverage data from the ABCD Study and other

large-scale longitudinal and publicly available datasets and to
apply state-trait methods to map neural and behavioral trajec-
tories in youth (for a more detailed overview of these models,
see [126]; [134]; [128]). In general, while many commonalities
and important features are shared across different variable-
centered approaches, selecting the most appropriate statistical
model for assessing change hinges on the specific theoretical
model of change and what is intended to be learned from the
model (see [120]; [101]; [119], for discussion), which is crit-
ical for informing the interpretation and applicability of the
research findings.

Person-centered models :

Despite the flexibility afforded by variable-centered analysis,
these methods are not generally equipped to capture underly-
ing developmental trajectories that are unique to distinct clus-
ters of individuals. This limitation can be particularly notable
for research that aims to characterize heterogeneous develop-
mental processes. Person-centered approaches, including la-
tent transition analysis and latent class growth analysis, ad-
dress this limitation by identifying subgroups of individuals
who share similar patterns of change. These models can reveal
meaningful subpopulations and help researchers understand
the factors that contribute to differences in developmental
trajectories. For example, taking advantage of the large sam-
ple size of the ABCD Study, [135] found evidence of four sub-
groups of youth with unique longitudinal patterns of depres-
sive symptoms over time and identified risk factors that were
differentially associated with the various trajectories.

The use of such models allows for a more nuanced under-
standing of the associations between risk factors and change
in symptomatology, as opposed to a snapshot of symptomatol-
ogy at a single time point. Despite a range of potential model
specifications for longitudinal mixture modeling, person-cen-
tered approaches tend to use parameterizations that default
to settings found in popular software packages (e.g., Mplus).
It has recently been demonstrated (see [136]) that the use of
such specifications tends to identify the so-called “cat’s cra-
dle” solution (see [137]) that consists of “…(a) a consistently
‘low’ group, (b) an ‘increase’ group, (c) a ‘decrease’ group, and
(d) a consistently ‘high’ group” [137], p. 322. Indeed, [135] de-
scribe their four-group solution as follows: “Of all participants,
536 (10.80%) were classified as increasing, 269 (5.42%) as per-
sistently high, 433 (8.73%) as decreasing, and 3724 (75.05%) as
persistently low” [135], p. 162. Although [137] cautioned that
groups from these trajectory-based approaches should not be
over-reified, this practice also remains common (e.g., [138];
[139]). Thus, though person-centered approaches can, in the-
ory, help researchers understand the factors that contribute to
differences in developmental trajectories, researchers should
more thoughtfully consider alternative specifications (see



[140], as an example) and be especially skeptical when default
specifications identify these four prototypic groups.

Hybrid approaches, such as growth mixture (jung2008;
[108]) and factor-mixture [112]; [141] modeling, combine as-
pects of both variable-centered and person-centered models,
allowing for the identification of latent subgroups while also
modeling relationships among growth parameters. This com-
bination provides a more comprehensive understanding of
longitudinal data by capturing both within- and between-
person variability. However, hybrid models can be more com-
plex, necessitating careful model specification, selection, and
interpretation. Additionally, these methods may require larger
sample sizes to ensure the stability and accuracy of results.

In summary, SEM approaches offer powerful tools for LDA,
enabling researchers to investigate complex relationships, in-
dividual differences, and change dynamics over time. The
choice between variable-centered, person-centered, and hy-
brid approaches depends on the research objectives and the
nature of the data. Despite their limitations, these models
have greatly advanced our understanding of developmental
processes and the factors that contribute to individual differ-
ences in change trajectories.

Advanced Structural Equation Models :

Advanced SEM approaches, such as the RI-CLPM and LCM-SR
models, have emerged to provide a clearer understanding of
important research questions and data structures in longitu-
dinal analysis. These advanced models extend traditional SEM
techniques, enabling researchers to disentangle within-per-
son and between-person effects, as well as capture additional
time-specific dependencies and associations that may not be
accounted for by the latent growth factors.

The RI-CLPM enhances the traditional cross-lagged panel
model by incorporating random intercepts, which allow for
the separation of stable individual differences from the dy-
namic within-person associations between variables over
time. Within-person variance in these models is captured by
a series of latent variables that reflect time specific variance
(i.e., the residual variance from the random intercept). These
time-specific variables are referred to as structured residu-
als. Distinguishing between-person variance subsumed by the
random intercept from the structured residuals is particularly
valuable for understanding the time-specific effects of one
variable on another, while accounting for the influence of in-
dividual differences. However, RI-CLPM may require larger
sample sizes to ensure stability and accuracy of the estimates
and can be computationally demanding. Using three waves
of ABCD Study data, [142] found a prospective association
between psychopathology and childhood obesity as well as
between childhood obesity and later eating behavior. The au-
thors also showed that reciprocal associations were overesti-

mated when stable, interindividual trait differences were not
included in the model (i.e., via the random intercept).

LCM-SR, on the other hand, extends the RI-CLPM by in-
cluding additional growth factors, such as a random linear
slope. That is, the LCM-SR is a hybrid between a latent growth
model and CLPM. This approach allows for a more compre-
hensive understanding of within-person change dynamics and
factors influencing change over time. By including structured
residuals, LCM-SR can capture additional time-specific rela-
tionships that are not explained by the latent growth factors.
However, even more so than the RI-CLPM, LCM-SR comes
with increased model complexity and requires careful specifi-
cation and interpretation.

In conclusion, advanced SEM approaches for LDA provide
valuable tools for addressing complex research questions and
data structures. While they offer more nuanced insights into
within-person change dynamics and the influence of individ-
ual differences, these models also come with certain limita-
tions, such as the necessity of multiple assessments (e.g., four
or more for LCM-SR), increased complexity, computational
demands, and the need for careful model specification and
interpretation. As with any statistical method, researchers
should carefully consider their research objectives, data char-
acteristics, and the assumptions of each model when selecting
the most appropriate advanced SEM approach for longitudi-
nal analysis. Given that these modeling approaches necessi-
tate more waves of data, they are not yet commonly used with
ABCD Study data. We anticipate that as more waves of ABCD
data are publically released, these models can be used to ad-
dress some of the pitfalls of the more traditional methods.

Longitudinal Analysis of Neuroimaging Data :

Neuroimaging data, characterized by its large scale, spatial
structure and binary data formats, requires the use of special-
ized software for effective analysis. Fortunately, there are now
several freely available software packages that provide options
for statistical modeling of brain imaging data, thus facilitat-
ing analysis of the brain’s function or structure at every voxel
or vertex in an image (see Fig. 3). However, the most widely
used packages have only rudimentary support for longitudinal
data. Prominent software solutions such as SPM (https://www.
fil.ion.ucl.ac.uk/spm) and FSL (https://fsl.fmrib.ox.ac.uk) pack-
ages offer limited support in analyzing longitudinal data due
to their use of strong assumptions. SPM assumes a common
longitudinal correlation structure over space, and FSL requires
balanced designs and relies on the assumption of compound
symmetry. Despite these limitations, there is a steady growth
in the development of neuroimaging tools that provide for
comprehensive longitudinal data analysis, typically via com-
monly adopted modeling approaches such as LMMs marginal
models. These emerging tools are equipped to handle more



complex scenarios, including unbalanced designs and random
covariate effects, among others.

AFNI (https://afni.nimh.nih.gov/), a well-established tool in
neuroimaging, integrates 3dLMEr [143]; https://afni.nimh.nih.
gov/pub/dist/doc/program_help/3dLMEr.html which adopts
an LMM-based approach by providing access to the ad-
vanced capabilities of R’s lme4’s lmer function. For surface-
based data, Freesurfer (https://surfer.nmr.mgh.harvard.edu/)
provides the linear mixed effects (LME) package for modelling
longitudinal data [144]; https://surfer.nmr.mgh.harvard.edu/
fswiki/LinearMixedEffectsModels. This tool is able to apply
spatial regularization of LMM parameters with surface-based
ROIs to improve stability [145].

For imaging data, LMM’s present a significant computa-
tional challenge, not only because they require iterative op-
timization but also because the computations cannot be vec-
torized as efficiently compared to ordinary least squares.
To overcome this challenge, The Big Linear Mixed Models
(BLMM, https://github.com/NISOx-BDI/BLMM) software ad-
dresses this by using Python’s broadcasting operations to es-
timate LMM’s as efficiently as possible [146]; [147]. BLMM
further separates the computation of sufficient statistics and
parameter estimation, allowing sensitive image data to remain
private if needed.

A different yet efficient approach is used with Fast and
Efficient Mixed-effects Analysis (FEMA, https://github.com/
cmig-research-group/cmig_tools), which uses a non-iterative
regression estimator of the LMM variance components plus
variance parameter quantization. This allows vectorization
within groups of voxels that share the same variance parame-
ters [148]. While this method uses different approximations,
the authors have shown it provides results that closely match
a traditional LMM implementation.

An alternative method for modeling longitudinal data is the
marginal model. This approach differs from others by mod-
eling only the population-level factors and covariates rather
than explicitly modeling individual intercepts and slopes. It
employs a flexible intra-subject covariance model to account
for residual dependence. Like the LMM, it allows for unbal-
anced designs and singleton subjects, and it implicitly mea-
sures any covariance that would otherwise be explained by
random covariates. In a marginal model, a “working covari-
ance” matrix is utilized. This matrix does not need to be accu-
rately modelled and may even be constructed under the po-
tentially incorrect assumption that the errors are independent.
In this case, parameter estimation reduces to ordinary least
squares, but remains consistent. A crucial component of this
method is the use of a robust “sandwich estimator” for stan-
dard errors, which accounts for any dependence not captured
by the working covariance. The Sandwich Estimator (SwE) is
a toolbox for SPM (https://www.nisox.org/Software/SwE, in-

cluding CIFTI support) and FSL (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Swe) that provides marginal model inference using an
independence working covariance matrix [149].

V. Discussion

As we enter the era of large-scale longitudinal investiga-
tions, it is essential to critically examine the various analyt-
ical methods that can be employed to glean insights from
these rich datasets. The complex nature of longitudinal data
demands sophisticated and well-suited methodologies to ac-
curately address research questions and minimize biases. This
paper aimed to provide an overview of diverse longitudinal
analysis techniques, with a particular emphasis on their ap-
plication to extensive longitudinal studies such as the ABCD
Study. Beyond contributing to the ever-growing body of
knowledge on LDA, we hope this manuscript also serves as a
valuable resource for researchers seeking to optimize the use



of large-scale longitudinal investigations in advancing our un-
derstanding of human development and behavior. In this dis-
cussion, we will focus on the key findings and recommenda-
tions of our review and discuss potential innovations that can
further enhance the utility of these methods.

We began by addressing fundamental concepts and consid-
erations in longitudinal research that are essential for gener-
ating accurate and meaningful insights into developmental
processes. Concepts such as vulnerable periods, developmen-
tal disturbances and snares, or cascade and experience effects
(among many others), are instrumental in shaping the de-
sign, analysis, and interpretation of longitudinal studies. To-
gether, these concepts provide a framework for understanding
the mechanisms underlying the course of development, while
also accounting for the complex interplay between individual
development and the influence of environmental factors. By
considering the intricate relationships among these factors,
researchers can better identify the critical time periods, situ-
ations, and contexts that contribute to individual differences
in developmental outcomes. This awareness enables more pre-
cise inferences regarding the causal relationships between ex-
posures and outcomes, ultimately leading to more robust and
meaningful findings that can help facilitate the translation of
research findings into practical applications in clinical and
public health settings.

We also discussed some of the opportunities, challenges,
and pitfalls that arise when working with longitudinal data.
Key issues include selecting appropriate methods to account
for the intricacies of longitudinal data, addressing missing
data in a way that minimizes biases, and determining suitable
longitudinal data structures that align with research questions
and context. To address these challenges, researchers should
carefully consider issues such as study design, selection of
methods that account for both within- and between-person
sources of variance, and employing modern techniques, (e.g.,
FIML, multiple imputation) for handling missing data. By ad-
hering to best practices in longitudinal research and remaining
vigilant of potential pitfalls, researchers can effectively har-
ness the power of longitudinal data to maximize the potential
of their investigations and gain valuable insights into complex
developmental processes, individual differences, and the un-
derlying mechanisms that drive change over time.

The final section, along with associated code and addi-
tional resources made available as online supplements, aims
to serve as a resource for researchers seeking to understand
and implement various longitudinal panel models. By provid-
ing an overview of different approaches, their strengths and
limitations, and key considerations for their use, we hope to
facilitate the selection of appropriate models tailored to spe-
cific research questions and data structures. It is essential for
researchers to consider their research objectives, the charac-

teristics of their data, and the assumptions underlying each
model when choosing the most suitable approach for longitu-
dinal analysis.

We encourage researchers to consult the cited literature
and online supplements for further guidance in selecting and
implementing longitudinal models when using the ABCD
Study dataset. As the field continues to advance, we antici-
pate the emergence of new methods and refinements to ex-
isting approaches, further expanding the toolkit available to
researchers for the analysis of longitudinal data. By staying
informed about developments in this area and critically eval-
uating the appropriateness of different models for their re-
search questions, researchers can ensure that their longitudi-
nal analyses are both rigorous and informative. Notably, in
this vast and continually evolving field, with numerous mod-
els and approaches available to address a wide range of re-
search questions, no single model is universally applicable or
without limitations. The diversity of methods ensures that re-
searchers can find an appropriate tool for their specific needs.
By familiarizing themselves with the various types of longi-
tudinal models, researchers can more effectively navigate the
complexities of longitudinal data and contribute valuable in-
sights into the developmental processes and individual differ-
ences that shape human experience.
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