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Abstract 

The Adolescent Brain Cognitive Development® (ABCD) Study provides a unique opportunity to 
investigate developmental processes in a large, diverse cohort of youths, aged approximately 9-
10 at baseline and assessed annually for 10 years. Given the size and complexity of the ABCD 
Study, researchers analyzing its data will encounter a myriad of methodological and analytical 
considerations. This review provides an examination of key concepts and techniques related to 
longitudinal analyses of the ABCD Study data, including: 1) characterization of the factors 
associated with variation in developmental trajectories; 2) assessment of how level and timing of 
exposures may impact subsequent development; 3) quantification of how variation in 
developmental domains may be associated with outcomes, including mediation models and 
reciprocal relationships. We emphasize the importance of selecting appropriate statistical 
models to address these research questions. By presenting the advantages and potential 
challenges of longitudinal analyses in the ABCD Study, this review seeks to equip researchers 
with foundational knowledge and tools to make informed decisions as they navigate and 
effectively analyze and interpret the multi-dimensional longitudinal data currently available. 



1. Introduction 

The Adolescent Brain Cognitive Development (ABCD) Study® is the largest longitudinal 
investigation of neurodevelopment and child health in the United States. Conceived and initiated 
by the National Institutes of Health (NIH), this landmark prospective longitudinal study aims to 
transform our understanding of the genetic and environmental factors impacting 
neurodevelopment and their roles in behavioral and health outcomes across ten years of 
adolescence Volkow et al. (2018). At its heart, the study is designed to chart the course of 
human development across multiple interacting domains from late childhood to early adulthood 
and to identify factors that lead to both positive and negative outcomes. Central to achieving 
these goals is the commitment of the ABCD Study and its NIH funders to an open science 
framework, intended to facilitate sharing of data and analytical methods by espousing practices 
that increase access, integrity, and reproducibility of scientific research. In this context, the 
ABCD Study is a collaboration with the broader research community. 

The size and scope of the ABCD Study data allow the research community to perform a large 
variety of developmental analyses of both substantive and methodological interest, presenting a 
unique opportunity to significantly advance our understanding of how a multitude of 
biopsychosocial processes unfold across critical periods of development. In this paper, we 
describe models and methods for longitudinal analysis of ABCD Study data that can address 
these fundamental scientific aims, including: 1) characterization of the genetic and 
environmental factors associated with variation in developmental trajectories; 2) assessment of 
how the level and timing of exposures may impact subsequent neurodevelopment; 3) 
quantification of how variation in developmental domains may be associated with outcomes, 
including mediation models and reciprocal relationships. We instantiate these longitudinal 
analyses in worked examples using the ABCD Release 5.1 data with accompanying R scripts. 
Worked examples are available in Quarto files, accessible in the project’s GitHub repository 
(https://github.com/OpenDevSci/longitudinal-dev) and accompanying site longitudinal.dev 
(https://longitudinal.dev/) 

1.1 The ABCD Study Data 

The ABCD Study enrolled a cohort of n=11,880 participants born between 2006-2008 and aged 
approximately 9-10 years at baseline, each with a parent/guardian. The study sample was 
recruited from households in defined catchment areas for each of the 21 (originally 22) study 
sites across the United States. Information regarding funding agencies, recruitment sites, 
investigators, and project organizations can be obtained at https://abcdstudy.org. The ABCD 
Study design is described in more detail in Garavan et al. (2018) and Dick et al. (2021). 

The ABCD Study is currently collecting longitudinal data on a rich variety of outcomes that will 
enable the construction of complex statistical models, potentially incorporating factors from 
many domains. Each new wave of data collection provides another building block for 
characterizing developmental trajectories and implementing longitudinal analyses that allow 
researchers to characterize normative development, to identify variables that presage deviations 
from normative development, and to assess a range of variables associated with 
biopsychosocial outcomes of interest. These data include: 1) a neurocognitive battery (Luciana 
et al. 2018; Thompson et al. 2019); 2) mental and physical health assessments (Barch et al. 
2018); 3) measures of culture and environment (Gonzalez et al. 2021; Zucker et al. 2018); 4) 
substance use (Lisdahl et al., 2021); 5) gender identity and sexual health (Potter et al. 2022); 6) 
biospecimens (Uban et al. 2018); 7) structural and functional brain imaging (Casey et al. 2018; 
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Hagler et al. 2019; Palmer et al. 2022); 8) geolocation-based environmental exposure data (Fan 
et al. 2021); 9) wearables and mobile technology (Bagot et al. 2018); and 10) whole-genome 
genotyping (Loughnan et al. 2020). Many of these measures are collected at in-person annual 
visits, with brain imaging collected at baseline and every other year going forward. A limited 
number of assessments are collected in semi-annual brief telephone or online assessments. 

Data are publicly released approximately annually, currently through the NIMH Data Archive 
(NDA). The study’s earliest data releases consisted primarily of one or two visits per participant. 
However, the most recent public release as of the writing of this paper (Release 5.1) contains 
data collected across five annual visits, including three brain imaging assessments (baseline, 
year 2 follow-up, and year 4 follow-up visits) for at least a subset of the cohort. Hence, starting 
with Release 5.0, it is feasible for researchers to begin focusing on the characterization of 
neurodevelopmental and other trajectories. 

1.2  

Organization and Aims 

• Part I. Introduction 

• The ABCD Study® 

• Part II. Developmental Research 

• Fundamental Concepts 

• Part III. Longitudinal Analysis 

• Methods & Analysis 

• Part IV. Online materials 

• Linked open-source resources 

2. Developmental Research 

2.1 Basic Concepts and Considerations 

There are several important concepts to consider when conducting longitudinal analyses in a 
developmental context. These include different ways of thinking about the developmental 
course, whether certain periods of development are relatively sensitive or insensitive to various 
types of insults or stressors, whether some time periods or situations inhibit the expression of 
individual differences due to extreme environmental pressures, and whether the same behavior 
manifested at different times represents the same or different phenomena. 

Moreover, in the case of developmentally-focused longitudinal research, each new 
measurement occasion not only provides a more extended portrait of the child’s life course but 
also brings with it greater methodological opportunities to make use of statistical models that 
distinguish within- from between-person effects and that loosen statistical constraints 
necessitated by fewer measurement occasions. For example, collecting two or more within-
person observations on the same construct at different times enables estimation of individual 
rates of change (slopes) where more observations allow for more precise estimates of individual 
slopes (random slopes), as well as characterization of non-linear development. Rate of change 



or other trajectory characteristics may be more informative about individuals than the simple 
snapshots of level differences that cross-sectional data are limited to informing about. Cross-
sectional age-related differences across individuals are poor substitutes for longitudinal 
trajectory estimates, except under highly restrictive assumptions (e.g., parallel trajectories and 
lack of age, cohort and experience effects; Thompson et al. 2011). Appreciation of these and 
other issues can help to guide the analysis and interpretation of data and aid translation to 
clinical and public health applications. 

2.1.1 Vulnerable periods. 

Adolescent development progresses normatively from less mature to more mature levels of 
functioning. However, unique epochs and experiences can alter the course of this idealized form 
of development. Consider research that shows cannabis use during adolescence is associated 
with later psychosis to a greater degree than cannabis use initiated later in development 
(Arseneault et al. 2002; Bechtold et al. 2016; Hasan et al. 2020; Semple et al. 2005). Similarly, 
rodent brains are especially sensitive to the neurotoxic effects of alcohol on brain structure and 
learning early in development, corresponding to early adolescence in humans (Spear 2016; 
Crews et al. 2000; Ji et al. 2018). In another example, longitudinal data from the National 
Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) show that binge 
drinking is associated more strongly with decrements in gray matter volume early in 
adolescence compared to later (Infante et al. 2022). These examples highlight the importance of 
considering the role of vulnerable periods – e.g., temporal windows of rapid brain development 
or remodeling during which the effects of environmental stimuli on the developing brain may be 
particularly pronounced– when trying to establish an accurate understanding of the association 
between exposures and outcomes. 

2.1.2 Developmental disturbances. 

Whereas vulnerable periods heighten neurobiological susceptibility to environmental influences, 
at other times, environmental exposures will tend to suppress stability and disrupt the orderly 
stochastic process of normative development (Schulenberg et al. 2019). This situation reflects a 
developmental disturbance in that the normal course of development is “altered” for a time by 
some time-limited process. In such cases, we might find that prediction of behavior in the period 
of the disturbance is reduced and/or, similarly, the behavior exhibited during the disturbance 
might have less predictive power with respect to distal outcomes compared to the behavior 
exhibited before and following the disrupted period. That is, once the environmental pressures 
are removed (or the individual is removed from the environment), patterns of individual 
differences (and autoregressive effects) recover to levels similar to those prior to entering the 
environment. 

2.1.3 Developmental snares and cascade effects. 

Normative development can also be upended by experiences (e.g., drug use) that, through 
various mechanisms, disrupt the normal flow of development wherein each stage establishes a 
platform for the next. For instance, substance use could lead to association with deviant peers, 
precluding opportunities for learning various adaptive skills and prosocial behaviors, in effect 
creating a “snare” that delays psychosocial development, such as maturing out of adolescent 
antisocial behavior (Moffitt 2015). Relatedly, the consequences of these types of events can 
cascade (e.g., school dropout, involvement in the criminal justice system) so that the effects of 
the snare are amplified (e.g., Masten et al. 2005; Rogosch et al. 2010). Although conceptually 
distinct from vulnerable periods, both types of developmental considerations highlight the 
importance of viewing behavior in the context of development and attempting to determine how 



various developmental pathways unfold. Longitudinal data are crucial in this context to assess 
individual levels of development prior to and following onset of experiences or other 
environmental factors (e.g., the ABCD Study collected data starting at approximately ages 9-10 
and hence before the onset of substance use for the vast majority of participants). 

2.1.4 Mediational Processes. 

Questions regarding the biological mechanisms whereby exposures impact outcomes can often 
be framed in terms of mediation analyses (MacKinnon et al. 2007; VanderWeele 2016). 
Mediation analyses can be implemented using the causal steps approach (Baron & Kenny 
1986) and structural equation models (SEM) (Preacher et al. 2011). More recently, mediation 
models have been adapted for longitudinal exposures, mediators, and/or outcomes (Bind et al. 
2016; VanderWeele & Tchetgen 2017). All of these modeling approaches decompose the total 
effects of an exposure on an outcome into direct and indirect effects, where indirect effects of an 
exposure flow through its impact on a mediating process. VanderWeele and Tchetgen (2017) 
detail conditions under which the direct and indirect causal effects can be in a longitudinal 
setting. An important example of mediational analyses in the ABCD Study is the impact of 
exposures on behavioral outcomes (e.g., neurocognition, mental health, substance use) via 
their impact on the brain, as quantified by imaging-derived phenotypes (IDPs). Methods for 
mediational analyses using multi-dimensional IDPs have been developed and applied to 
functional MRI data (e.g., Lindquist 2012); Zhao et al. 2018). 

3. Longitudinal Data 

3.1 Considerations and Challenges 

The hallmark characteristic of longitudinal data analysis (LDA) is the administration of repeated 
measurements of the same constructs on assessment targets (e.g., individuals, families) across 
time. The primary rationale for collecting longitudinal data is to assess within-person change 
over time, allowing researchers to estimate individual developmental trajectories and the genetic 
and person-level factors that may impact these trajectories. Administering repeated 
measurements more frequently or over longer periods enables researchers to ask more 
nuanced questions and to make stronger inferences. 

3.1.1 Two Time Points versus Three or More. 

Although the clear leap from cross-sectional to the realm of longitudinal data involves going 
from one assessment to two or more assessments, there are also notable distinctions in 
designs based on two-assessment points versus three or more measurement occasions. Just 
as cross-sectional data can be informative in some situations, two waves of data can be 
beneficial in contexts such as when an exposure is involved (e.g., pre/post tests), or if the 
central goal is prediction (e.g., trying to predict scores on Variable A at time T as a function of 
prior scores on Variable A and Variable B at time T-1). At the same time, analyses of data 
based on two assessments are inherently limited on multiple fronts. As Rogosa et al. (1982) 
noted over forty years ago, “Two waves of data are better than one, but maybe not much better” 
(p. 744). 

These sentiments are reflected in more contemporary recommendations regarding best-practice 
guidelines for prospective data, which increasingly emphasize the benefits of additional 
measurement occasions for trajectory estimation, model identification and accurate parameter 
inferences. This is also consistent with recommendations that developmental studies include 
three or more assessment points, given it is impossible for data based on two-time points to 



determine the shape of development (given that linear change is the only estimable form for two 
assessment waves; (see Duncan & Duncan 2009). Research designs that include three (but 
preferably more) time points allow for non-linear trajectory estimation and increasingly nuanced 
analyses that more adequately tease apart sources of variation and covariation among the 
repeated assessments (King et al., 2018)– a key aspect of developmental research. 

To illustrate, developmental theories are useful for understanding patterns of within-individual 
change over time (discussed in further detail, below); however, two data points provide meager 
information on change at the person level. This point is further underscored in a recent review of 
statistical models commonly touted as distinguishing within-individual vs between-individual 
sources of variance in which the study authors concluded “… researchers are limited when 
attempting to differentiate these sources of variation in psychological phenomenon when using 
two waves of data” and perhaps more concerning, “…the models discussed here do not offer a 
feasible way to overcome these inherent limitations” (Littlefield et al. 2021). It is important to 
note, however, that despite the current focus on two-wave designs versus three or more 
assessment waves, garnering three assessment points is not a panacea for longitudinal 
modeling. Indeed, several contemporary longitudinal models designed to isolate within-
individual variability (e.g., the Latent Curve Model with Structured Residuals [LCM: SR]; Curran 
et al. 2014) require at least four assessments to parameterize fully and, more generally, 
increasingly accurate and nuanced parameter estimates are obtained as more assessment 
occasions are used (Duncan and Duncan 2009). 

3.1.2 Types of stability and change 

If one were to try to sum up what developmental trajectories in a living organism are exactly, 
one could plausibly argue they are the patterns of stability and change in its phenotypes as the 
organism traverses the life course. Symbolically, developmental trajectories can be expressed 
as fi(t), a possibly multivariate function of time t, specific to the ith individual and typically taking 
values in the real numbers for continuous phenotypes and the integers for discrete phenotypes. 
Ideally, t is a biologically meaningful temporal index (e.g., calendar age) as opposed to an 
exogenous progression of events (e.g., study visit number). Properties of interest might include 
rate of change over time, degree of smoothness (e.g., continuously differentiable), shape (e.g., 
polynomial or asymptotic behavior), how and how much f(t) differs across individuals, and what 
factors predict either within-individual variation (at different times) or between-individual 
variation (either overall or at specific times). 

There are a few different ways to think about patterns of stability and change (see Figure 1). 
Consider measuring school disengagement at the start of middle school and the end of middle 
school. A common first step may be to compare sixth graders’ average disengagement values 
and eighth graders’ disengagement values. This comparison of the average scores for the same 
group of individuals at multiple time points is referred to as “mean-level”, as it provides 
information about change over time (or lack thereof) for an outcome of interest aggregated 
across members of a group. In contrast, “between-individual” stability could be assessed, e.g., 
by calculating the Spearman correlation between the values obtained at different time points 
(e.g., ‘disengagement in sixth grade’ with ’disengagement in eighth grade). This analysis 
focuses on the degree to which individuals retain their relative placement in a group across 
time. Consider someone who reported the lowest frequencies of disengagement in 6th grade 
and may report significantly higher disengagement over middle school (i.e., exhibit high levels of 
change), but report the lowest frequencies of disengagement in eighth grade. That is, the 
individual is manifesting rank-order stability, even in the context of high mean-level change. 



Both types of stability and change are important. Mean-level change in certain traits might help 
to explain why, in general, populations of individuals tend to be particularly vulnerable to the 
effects of environmental factors in specific age ranges; rank-order stability might help to quantify 
the extent to which certain characteristics of the individual are more or less trait-like compared 
to others. For example, in some areas of development, considerable mean-level change occurs 
over time (e.g., changes in Big 5 personality traits; Bleidorn et al. 2022), but exhibit relatively 
high rank-order stability, at least over shorter measurement intervals (Bleidorn et al. 2022; 
Roberts and DelVecchio 2000; Roberts, Walton, and Viechtbauer 2006). 

Despite the useful information afforded by examining mean-level and rank-order stability and 
change, these approaches are limited in that they provide little information about the overall 
patterns of within-individual change and, in turn, can result in fundamental misinterpretations 
about substantial or meaningful changes in an outcome of interest (Curran and Bauer 2011). 
For example, questions related to the impact of early-onset substance use on brain 
development focus on changes within a given individual (i.e., intraindividual differences). The 
ABCD Study will provide researchers with over ten time points for certain constructs (e.g., 
substance use) across a ten-year period, allowing for a detailed study of some within-person 
processes. 

 

Figure 1: Types of Stability and Change 

3.1.3 Use of appropriate longitudinal models 

There is growing recognition that statistical models commonly applied to longitudinal data often 
fail to align with the developmental theory they are being used to assess (Curran and Bauer 
2011; Hoffman 2015; Littlefield et al. 2021). First, developmental studies typically involve the 
use of prospective data to inform theories that are concerned with clear within-person processes 
(e.g., how phenotypes change or remain stable within individuals over time, (Curran and Bauer 



2011). Despite this, methods generally unsuited for disaggregating between- and within-person 
effects (e.g., cross-lagged panel models [CLPM]) remain common within various extant 
literatures. Fortunately, there exists a range of models that have been proposed to tease apart 
between- and within-person sources of variance across time (see Littlefield et al. 2021; Orth et 
al. 2021). Most of these contemporary alternatives incorporate time-specific latent variables to 
capture between-person sources of variance and model within-person deviations around an 
individual’s mean (or trait) level across time (e.g., random-intercept cross-lagged panel model 
[RI-CLPM]; Hamaker et al. 2015); latent curve models with structured residuals [LCM-SR]; 
Curran et al. 2014). It is important to note however that these models require multiple 
assessments waves (e.g., four or more to fully specify the LCM-SR) and additional expertise to 
overcome issues with model convergence, and appreciation of modeling assumptions when 
attempting to adjudicate among potential models in each research context (see Littlefield et al. 
2021, for further discussion). 

Second, many statistical models assume certain characteristics about the data to which they are 
being applied. Common assumptions of parametric statistical models (e.g., linear mixed-effects 
models) include normality and equality of variances. These assumptions should be carefully 
considered before finalizing analytical approaches, so that valid inferences can be made from 
the data, as violation of a model’s assumptions can substantively invalidate the interpretation of 
results. For example, longitudinal data can exhibit heterogeneous variability (i.e., the variance of 
the response changes over the duration of the study) that may need to be accounted for within a 
model. Another pertinent modeling assumption is whether trajectories are linear or non-linear. 
With two or three assessments per individual, usually only a linear model of within-person 
change is feasible. 

As the study progresses and more time points are assessed, the potentially nonlinear aspects of 
trajectories can be assessed, for example using quadratic functions of time. Methods that make 
even fewer assumptions about trajectory shapes, such as nonparametric curve estimation at the 
mean (e.g., Generalized Additive Mixed Models [GAMMs]; Wood 2017) and at the individual 
level (e.g., Functional Data Analysis [FDA]; Ramsay and Silverman 2002) may also become 
useful. Note, baseline age in the ABCD Study ranges over two full years; for some outcomes it 
may be feasible to include a possibly nonlinear effect of baseline age along with a linear effect 
of within-person change in age even with only two or three assessment times (Thompson et al., 
2013). 

3.1.4 Continuous and Discrete Outcomes 

Repeated assessments within the ABCD Study can be based on continuous or discrete 
measures. Examples of discrete measures include repeated assessments of binary variables 
(e.g., past 12-month alcohol use disorder status measured across ten years), ordinal variables 
(e.g., caregiver-reported items measuring emotional and behavioral concerns via the Child 
Behavior Checklist including the categories of “Not True”, “Somewhat True”, and “Very True”), 
and count variables (e.g., number of cigarettes smoked per day). In many ways, the 
distributional assumptions of indicators used in longitudinal designs mirror the decision points 
and considerations when delineating across different types of discrete outcome variables, a 
topic that spans entire textbooks (e.g., see Lenz 2016). For example, the Mplus manual 
(Muthén 2017) includes examples of a) censored and censored-inflated models, b) linear growth 
models for binary or ordinal variables, c) linear growth models for a count outcome assuming a 
Poisson model, and d) linear growth models for a count outcome assuming a zero-inflated 
Poisson model. Beyond these highlighted examples, other distributions (e.g., negative binomial) 
can be assumed for the indicators when modeling longitudinal data (Ren et al. 2022). These 
models account for issues that may occur when working with discrete outcomes, including 



overdispersion, i.e., when the variance is higher than would be expected based on a given 
parametric distribution (see Lenz 2016). Given the sheer breadth of issues relevant to 
determining adequate models for discrete outcomes, it is not uncommon for texts on LDA to 
only cover models and approaches that assume continuous variables (e.g., Little 2013). 
However, some textbooks on categorical data analysis provide more detailed coverage of the 
myriad issues and modeling choices to consider when working with discrete outcomes: Lenz 
(2016), Chapter 11 for matched pair/two-assessment designs; Chapter 12 for marginal and 
transitional models for repeated designs, such as generalized estimating equations, and 
Chapter 13 for random effects models for discrete outcomes. 

3.1.5 Issues in attributing longitudinal change to development 

Systematic changes over time in a variable of interest are not always attributable to 
development: various pitfalls with longitudinal data can complicate or even invalidate this 
conclusion. For example, if data missingness or participant dropout are related to the values of 
the outcome, changing sample composition as the study progresses can bias mean trajectory 
estimates (we describe this in more detail in Section 3.1.7 below). Another prerequisite for valid 
developmental interpretations of longitudinal data is to establish whether a construct is 
measured consistently over time (i.e., longitudinal measurement invariance; Liu et al. 2017; Van 
De Schoot et al. 2015; Willoughby et al. 2012). Establishing longitudinal measurement 
invariance makes it more likely that change over time for a given construct is attributable to 
individual development rather than merely a measurement artifact. For instance, one study 
using data from the ABCD Study (Brislin et al. 2023) found differential item functioning in two 
items from a brief delinquency measure, revealing significant bias in an arrest item across Black 
and White youth. More specifically, Black youth were more likely to report being arrested 
compared to White youth with similar levels of delinquency. Prevalence rates of delinquent 
behavior would have been severely biased if measurement invariance had not been tested. 
Alternatively, Vize et al. (2023) showed partially strong to strong evidence of longitudinal 
measurement invariance across broad externalizing dimensions in youth taking part in the 
ABCD Study, suggesting that changes observed over time in these constructs were not due to 
systematic measurement error, but likely reflect true developmental change. 

In addition to measurement invariance, the reliability of measures over time is another crucial 
consideration in longitudinal research, particularly when interpreting changes in constructs like 
neuroimaging metrics. Reliability, or the consistency of a measurement across time, directly 
influences the validity of conclusions drawn from longitudinal data (Revelle & Condon, 2019). In 
the neuroimaging domain, test-retest reliability is especially pertinent, as it determines whether 
the observed changes in brain function or structure reflect true neural changes or are simply 
due to measurement error (Elliott et al., 2020). When reliability is low, the potential for 
measurement error increases, which can obscure true longitudinal effects or produce 
misleading results. For example, using the Intraclass Correlation Coefficient (ICC) as a reliability 
metric in neuroimaging studies can provide insights into the stability of fMRI measures across 
sessions, which is crucial for interpreting changes over time (Elliott et al., 2020). When modeling 
longitudinal data, reporting relevant reliability statistics is essential for enhancing the 
transparency and interpretability of the findings. 

Observed patterns of growth and decline often differ between cross-sectional vs. longitudinal 
effects (Salthouse 2014) where subjects gain increasing experience with the assessment with 
each successive measurement occasion. Such experience effects on cognitive functioning have 
been demonstrated in adolescent longitudinal samples similar to ABCD (Sullivan et al. 2017) 
and highlight the need to consider these effects and address them analytically. In the case of 
performance-based measures (e.g., matrix reasoning related to neurocognitive functioning; see 



Salthouse 2014), this can be due to “learning” the task from previous test administrations (e.g., 
someone taking the test a second time performs better than they did the first time simply as a 
function of having taken it before). Even in the case of non-performance-based measures (e.g., 
levels of depression), where one cannot easily make the argument that one has acquired some 
task-specific skill through learning, it has been observed that respondents tend to endorse lower 
levels on subsequent assessments (e.g., Beck et al. 1961; French and Sutton 2010) and this 
phenomenon has been well documented in research using structured diagnostic interviews 
(Robins, 1985). While it is typically assumed that individuals are rescinding or telling us less 
information on follow-up interviews, there is reason to suspect that in some cases the initial 
assessment may be artifactually elevated (see Shrout et al. 2018). 

Some longitudinal studies, e.g., accelerated longitudinal designs (ALDs; Thompson et al. 2011) 
are especially well suited for discovering these effects and modeling them. While ABCD is not 
an ALD, the variability in age (and grade in school) at the time of baseline recruitment 
(approximately 9-10 years old) allows some measures, collected every year, to be 
conceptualized as an ALD (e.g., substance use; prosocial behavior; family conflict; screen time). 
It is also possible that in later waves, analyses will allow for disaggregating the confounded 
effects of age and the number of prior assessments. However, ABCD is fundamentally a single-
cohort, longitudinal design, wherein number of prior assessments and age are mostly 
confounded, and for, perhaps, most analyses, the possible influence of experience effects 
needs to be kept in mind. 

3.1.6 Modeling Covariance 

A central issue for repeated measurements on an individual is how to account for the correlated 
nature of the data. Lack of independence of residuals across time occurs for longitudinal data 
with repeated assessments on individuals and in other situations with nested data (e.g., visits 
nested within participants, children nested within schools; siblings nested within families). Note, 
the ABCD Study has multiple levels of nesting, depending on the analysis, including within-
participant, within-family, within-school, within-MRI scanner, and within-site. 

Statistical models for nested data include two main components, coupling a model for the mean 
response and its dependence on covariates with a model for the covariance among repeated 
outcomes on an individual. In contrast, traditional methods, such as multiple regression and 
ANOVAs, assume residuals are independent and thus are generally inappropriate for designs 
that incorporate some type of nesting. Specifically, given that residuals are no longer 
independent in a repeated measures design, standard errors from these models are biased and 
can produce misleading inferences. Therefore, an initial question to be addressed by a 
researcher analyzing prospective data is how to best model their covariance structure. A range 
of methods can be used to model covariance structures, each with its own set of tradeoffs 
between model fit and parsimony and which may be more or less appropriate for each specific 
application (e.g., see Kincaid 2005). 

The most common approach is to use random effects. Essentially, random effects allow for 
covariance estimates around fixed effects. A classic example (from Bryk and Raudenbush 1992; 
Singer 1998) involves math achievement measured among students nested within schools. In a 
basic, intercept-only model with no covariates (i.e., an unconditional growth model), there would 
be one fixed effect (the grand mean, or intercept, of math achievement), one school random 
effect (representing variation in the intercept between schools) and the within-school student 
residuals (variation left over after accounting for fixed and random effects). In this framework, 
each student’s score would be the sum of the fixed effect (the grand mean), the school random 
effect and the student’s within-school residual. Assumptions about the variance and covariance 



components of this model dictate the form of the variance/covariance structure. For example, if 
we assume the random effects are independent and identically distributed, the implied structure 
would be compound symmetry, where it is assumed the covariance of any two students in a 
single school is captured by a school random intercept and the covariance of any two students 
in different schools is zero. The assumptions of this relatively simple covariance structure can 
be relaxed depending on the nesting structure of the data, resulting in different covariance 
structures with additional parameters (see Singer 1998). 

In longitudinal studies, measurement occasions are nested within individuals. Mixed-effect 
models can be fitted to longitudinal data that couple a model for growth (development) at the 
mean level with a model for capturing within-individual covariance of assessments. For 
example, a linear growth model would involve two fixed effects – one for the intercept (the 
average score when time is coded zero) and one for the linear slope (the change in scores for 
each unit increase in time). Random effects could include a random effect for intercept, 
capturing individual variation in scores at the first measurement occassion, and a random effect 
for the linear slope, capturing individual variation in linear change across additional 
measurements. Within-individual residuals account for the remaining variation in assessments 
after accounting for the fixed and random intercepts and slopes. Assumptions regarding the 
covariation among the random effects also indicate different covariance structures. For 
example, it is typical to assume that the random intercept and slope components covary, i.e., an 
individual’s score at an initial measurement relates to the amount of change exhibited across 
subsequent measurements. Further, particularly in structural equation model forms of this 
model, it is sometimes assumed that the variance of the residuals varies across assessments 
(Curran, 2003). 

An alternative to random effects is the autoregressive structure, which allows for correlations 
between repeated assessments to diminish across time. As the name suggests, the structure 
assumes the residual of a subsequent measurement occasion (e.g., measurement 2) is 
regressed onto the residual of a prior measurement occasion (e.g., baseline measurement). The 
most common type of autoregressive structure is the AR(1), where residuals at time t + 1 are 
regressed on residuals at time t. Identical to compound symmetry, this model assumes the 
variances are homogenous across time; however, it differs from compound symmetry in that the 
correlations between repeated assessments decline exponentially across measurement 
occasions rather than remaining constant. That is, we can think of the underlying process as a 
stochastic one that wears itself out over time. For example, per the AR(1) structure, if the 
correlation between data obtained at the first and second measurement occasions is thought to 
be .5, then the correlation between first and third measurement occasions would be assumed to 
be .5 × .5 = .25, while the correlation between first and fourth measurement occasions would be 
assumed to be .5 × .5 × .5 = .125. As with compound symmetry, the basic AR(1) model is 
parsimonious in that it only requires two parameters: the variance of the residuals and the 
autoregressive coefficient. 

Notably, the assumption of constant autoregressive relations between assessments is often 
relaxed in commonly employed designs that use autoregressive modeling (e.g., CLPM). These 
designs still typically assume an AR(1) process. However, the magnitude of these relations is 
often allowed to differ across different AR(1) pairs of assessment (e.g., the relation between 
measurement 1 and measurement 2 can be different from the relation between measurement 2 
and measurement 3). These models also often relax the assumption of equal variances of the 
repeated assessments. 

Although the AR(1) structure may involve a more realistic set of assumptions compared to 
compound symmetry, in that the AR(1) model allows for diminishing correlations across time, 



the basic AR(1) model, as well as autoregressive models more generally, can also suffer from 
several limitations in contexts that are common in prospective designs. In particular, recent work 
demonstrates that if a construct being assessed prospectively across time is trait-like in nature, 
then a simple AR(1) process fail to adequately account for this trait-like structure, with the 
downstream consequence that estimates derived from models based on AR structures (such as 
the CLPM) can be misleading and fail to adequately demarcate between- vs. within-person 
sources of variance (Hamaker et al. 2015). Note also, discrete-time autoregressive structures 
such as AR(1) implicitly assumes relatively constant time gaps between measurements; this 
may not be true in many applications using the ABCD Study data. 

3.1.7 Missing Data/Attrition 

Attrition from a longitudinal study such as ABCD is inevitable and represents a potential threat 
to the external validity of analyses conducted at later visits, especially since attrition can only be 
expected to grow over time (Littlefield et al. 2022). The ABCD Retention Workgroup employs a 
data-driven approach to examine, track, and intervene in these issues and while preliminary 
findings show participant race and parent education level to be associated with late and missing 
visits, although to date, formal attrition in ABCD has been minimal (Ewing et al. 2022). Ideally, 
one tries to minimize attrition through good retention practices from the outset via strategies 
designed to maintain engagement in the project (Cotter et al. 2005; Hill et al. 2016; Watson et 
al. 2018). However, even the best-executed studies need to anticipate growing attrition over the 
length of the study and implement analytic strategies designed to provide the most valid 
inferences. 

Perhaps the most key concern when dealing with data that is missing due to attrition is 
determining the degree of bias in retained variables that is a consequence of attrition. Such bias 
can attenuate generalizability, particularly if the pattern of missingness is not random (e.g., 
certain subsets of the population are more likely to drop out/not attend a visit). Assuming that 
the data are not missing completely at random, attention to the nature of the missingness and 
employing techniques designed to mitigate attrition-related biases need to be considered in all 
longitudinal analyses. 

Three types of missingness are considered in the literature (Little and Rubin 1989; Little 2013), 
namely: a) missing completely at random (MCAR), b) missing at random (MAR), and c) missing 
not at random (MNAR). Data that are MCAR are a simple random sample of all data in a given 
dataset. MAR implies missing data are a random sample (i.e., does not hinge on some 
unmeasured variables) within strata of the measured covariates in a dataset (e.g., biological 
sex). Data that are MNAR are missing as a function of unobserved variables and may bias 
associations even after conditioning on the observed covariates. Graham (2009) provides an 
excellent and easy-to-digest overview of further details involving missing data considerations. 

Modern approaches for handling missing data, such as full-information maximum likelihood, 
propensity weighting, auxiliary variables and multiple imputation avoid the biases of older 
approaches (see Enders 2010; Graham 2009). Graham (2009) noted several “myths” regarding 
missing data. For example, Graham notes many assume the data must be minimally MAR to 
permit estimating procedures (such as maximum likelihood or multiple imputation) compared to 
other, more traditional approaches (e.g., using only complete case data). Violations of MAR 
impact both traditional and more modern data estimation procedures, though as noted by 
Graham, violations of MAR tend to have a greater effect on older methods. Graham thus 
suggests that imputing missing data is a better approach compared to listwise deletion in most 
circumstances, regardless of the model of missingness (i.e., MCAR, MAR, MNAR; see Graham 
2009; but also see Twisk et al. 2013). The ABCD Biostatistics Workgroup is currently 



implementing several missing data approaches which are being implemented and compared to 
each other (and listwise deletion) in the 5.0 data release, including, propensity score weighting, 
and multiple (multilevel) imputation. 

3.1.8 Impact of COVID-19 on Study Design and Data Interpretation 

The COVID-19 pandemic has introduced significant challenges to longitudinal studies like the 
ABCD Study, including disruptions to data collection and alterations in adolescent behavior, 
mental health, and development. These disruptions could confound longitudinal analyses if not 
properly addressed, potentially introducing biases such as period effects, which are time-
specific events that affect all individuals in a population at a particular point in time. Period 
effects, such as changes in public health policies or economic downturns, can influence 
developmental outcomes across cohorts (see Jager et al., 2021). Indeed some recent studies 
using the ABCD dataset suggest the pandemic's influence on various developmental outcomes 
(Pelham et al. 2021; Hamatani et al. 2022; Stinson et al. 2021). Moreover, the pandemic's 
impact on study retention and data collection practices may exacerbate issues related to 
missing data, particularly increasing the likelihood of data being missing not at random (MNAR). 
To mitigate these effects, researchers should consider incorporating pandemic-specific 
covariates and employ analytic techniques such as sensitivity analyses to explore the 
robustness of findings (Yip et al. 2022; Nagata et al. 2022). 

 3.1.9 Selection and Modeling of Covariates 

An essential aspect of longitudinal analysis is the careful selection and modeling of covariates, 
as these choices can significantly influence study results and interpretations. In the context of 
the ABCD Study, covariates can be categorized as either time-invariant (e.g., demographic 
variables such as race, ethnicity, and sex) or time-varying (e.g., measures of stress, family 
environment, or substance use over time). Time-invariant covariates are typically measured at 
baseline and do not change over the study period, making them useful for controlling for stable 
characteristics that may influence outcomes. Conversely, time-varying covariates, which are 
repeatedly measured throughout the study, allow for the examination of how changes in these 
variables correlate with changes in outcomes over time (Fitzmaurice et al., 2012; Singer & 
Willett, 2003).  

When selecting covariates, it is crucial to consider both the theoretical framework guiding the 
study and empirical evidence from prior research, as well as the appropriate statistical modeling 
techniques. Mixed-effects models, for example, are particularly well-suited for longitudinal data 
as they can handle both fixed effects (time-invariant covariates) and random effects (time-
varying covariates), allowing for a more nuanced understanding of how different covariates 
impact the outcome variable over time. Covariate adjustment is also a critical consideration, as 
it aims to control for confounding variables that could influence the relationship between primary 
predictors and outcomes. However, improper or excessive adjustment can distort relationships, 
masking true associations or introducing biases (Meehl, 1971; Lynam et al., 2006). This is 
especially important in longitudinal studies, where both time-invariant and time-varying 
covariates must be carefully handled to avoid over-adjustment, which could lead to misleading 
inferences. Thoughtful selection and modeling of covariates, as emphasized by Saragosa-Harris 
et al. (2022), can enhance the robustness and interpretability of results, ultimately leading to 
more accurate and meaningful conclusions regarding developmental trajectories in studies like 
ABCD. 



3.1.10 Quantifying effect sizes longitudinally 

Given that longitudinal data involve multiple sources of variation, quantifying effect sizes 
longitudinally is more complex compared to deriving such estimates from cross-sectional data. 
An effect size can be defined as, “a population parameter (estimated in a sample) encapsulating 
the practical or clinical importance of a phenomenon under study.” (Kraemer 2014). Common 
effect size metrics include the Pearson correlation r between two variables and the standardized 
difference between two means, Cohen’s d (Cohen 1988). An extensive discussion of cross-
sectional effect sizes and their relevance for ABCD is given in Dick et al. (2021). 

Adjustments to common effect size calculations, such as Cohen’s d, are required even when 
only two time points are considered (e.g., Morris and DeShon (2002). Wang et al. (2019) note 
there are multiple approaches to obtaining standardized within-person effects, and that 
commonly suggested approaches (e.g., global standardization) can be problematic (see Wang 
et al. 2019, for more details). Thus, obtaining effect size metrics based on standardized 
estimates that are relatively simple in cross-sectional data (such as r) becomes more complex in 
the context of prospective longitudinal data. Feingold (2009) noted that equations for effects 
sizes used in studies involving growth modeling analysis (e.g., latent growth curve modeling) 
were not mathematically equivalent, and the effect sizes were not in the same metric as effect 
sizes from cross-sectional analysis (see Feingold 2009, for more details). 

Given this issue, there have been various proposals for adjusting effect size measures in 
repeated assessments. Feingold (2019) reviews the approach for effect size metrics for 
analyses based on growth modeling, including when considering linear and non-linear (e.g., 
quadratic) growth factors. Morris and DeShon (2002) review various equations for effect size 
calculations relevant to combining estimates in meta-analysis with repeated measures and 
independent-groups designs. Other approaches to quantifying effect sizes longitudinally may be 
based on standardized estimates from models that more optimally disentangle between- and 
within-person sources of variance. As an example, within a random-intercept cross-lagged 
panel model (RI-CLPM) framework, standardized estimates between random intercepts (i.e., the 
correlation between two random intercepts for two different constructs assessed repeatedly) 
could be used to index the between-person relation, whereas standardized estimates among 
the structured residuals could be used as informing the effect sizes of within-person 
relationships. 

3.1.11 Longitudinal Data Structures 

An ideal longitudinal analysis integrates (a) a well-articulated theoretical model, (b) an 
appropriate longitudinal data structure, and (c) a statistical model that is an operationalization of 
the theoretical model (Collins, 2006). To accommodate various research questions and 
contexts, different types of longitudinal data and data structures have emerged (see Figure 1). 
An understanding of these data structures is helpful, as they can warrant different types of LDA. 
Given that identifying a starting point for making comparisons is somewhat arbitrary, Curran and 
Bauer (2019) provide a nice on-ramp in first distinguishing between the use of “time-to-event” 
and “repeated measures” data. Although both model time, the former is concerned with whether 
and when an event occurs, whereas the later is focused on growth and change (Curran and 
Bauer 2019). Time-to-event structures measure time from a well-defined origin point up to the 
occurrence of an event of interest. This data structure is most often analyzed using survival 
analysis methods (e.g., hazard rate models, event history analysis, failure-time models and the 
time-to-event data can be based on a single assessment or include multiple recurrent or 
competing events). While much has been written about “time-to-event” data (Hosmer et al. 
2008; Rizopoulos 2012), including a recent analysis examining exclusionary discipline in 



schools using data from the ABCD Study (Brislin et al. 2024), our emphasis will be given to the 
modeling of “repeated measures” data. 

 Link 

When discussing longitudinal analysis, we are most often talking about data collected on the 
same unit (e.g., individuals) across multiple measurement occasions. However, repeated-
measures analysis is not a monolith, and it will serve us well to distinguish between a few of the 
most common types. One such approach to repeated measures analysis is the use of time-
series models. These models generally consist of a long sequence of repeated measurements 
(≧ 50-100 measurements) on a single or small number of variables of interest. Time-series 

analysis is often used to predict temporal trends and cyclic patterns and is geared toward 
making inferences about prospective outcomes within a population (with relatively less focus on 
inferring individual-level mechanisms and risk factors). 

A related type of repeated measures analysis is Intensive Longitudinal Data (ILD) (Curran & 
Bauer, 2011). Similar to time-series analysis, ILD models involve frequent measurements 
(approximately 30-40 measurements) of the same individuals within a relatively circumscribed 
period (e.g., experience sampling to obtain time series data from many individuals). Although 
ILD models may include slightly fewer measurement occasions than traditional time-series data, 
they typically involve a larger number of subjects (around 50-100 subjects), which enables the 
examination of short-term patterns across a more representative sample (Bolger & Laurenceau, 
2013). ILD models are particularly valuable for capturing dynamic processes and can 
incorporate time-series modeling techniques that fit parameter estimates to each individual’s 
data, thus allowing for the exploration of individual differences in outcomes (Curran & Bauer, 
2011). With the growing use of ILD in fields like neuroimaging and behavioral science, 
advanced analytical techniques such as Dynamic Structural Equation Modeling (DSEM) 
(Asparouhov et al., 2018), Group Iterative Multiple Model Estimation (GIMME) (Gates & 
Molenaar, 2012), and Unified Structural Equation Modeling (uSEM) (Gates et al., 2010) are 
becoming increasingly relevant. DSEM, for instance, extends traditional SEM by allowing for the 
modeling of time-varying processes and latent variables within ILD, making it possible to 
disentangle within-person and between-person variations over time (Asparouhov et al., 2018). 
GIMME offers a data-driven approach to identify group-level patterns while accounting for 
individual-level heterogeneity, which is particularly useful when working with datasets that 
involve trial-level or mobile data (Gates & Molenaar, 2012). uSEM, on the other hand, integrates 
multiple types of data (e.g., time-series, multilevel, and latent variable models) within a unified 
framework, offering a flexible approach to model complex, dynamic processes in ILD (Gates et 
al., 2010). The application of these techniques to ABCD data not only enhances the ability to 
model developmental trajectories with greater precision but also opens avenues for integrating 
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multiple data sources, such as neuroimaging, behavioral, and mobile data. These methods 
provide powerful tools for researchers to investigate the interplay between various factors 
affecting adolescent development, offering deeper insights into the mechanisms underlying 
observed behaviors and outcomes. 

The final type of repeated measures analysis that we will primarily focus on is the longitudinal 
panel study. These models follow a group of individuals— a panel (also referred to as a cohort) 
— across relatively fewer measurement occasions (~ 5-15) and are often focused on examining 
both change within- and between-individuals. The ABCD Study is primarily a longitudinal panel 
study, though some data streams (e.g., functional brain imaging, FitBit data) could be analyzed 
as ILP or even time series methods. 

While other longitudinal designs have their own unique strengths and applications, the 
longitudinal panel design is particularly well-suited for investigating developmental processes in 
the context of the ABCD Study. In the following sections, we will discuss various analytic 
methods commonly used to analyze longitudinal panel data, including growth models, mixed 
models, and a number of additional trajectory models. These methods provide valuable insights 
into within- and between-individual differences and are highly relevant for researchers working 
with the ABCD Study dataset. By focusing on these methods, we aim to equip readers with the 
knowledge necessary to conduct longitudinal research and perform analyses using the rich, 
longitudinal, and publicly available data from the ABCD Study. 

4. Longitudinal Analysis 

4.1 Types of longitudinal panel models 

With the large and continually expanding body of research on statistical methods for longitudinal 
analyses, determining which longitudinal model to implement can be challenging. This section 
aims to help researchers navigate these many options to identify the statistical approach most 
appropriate to their unique research question when deciding on how to measure change over 
time. Notably, there are a myriad of viable ways one can go about grouping various types of 
longitudinal models for presentation. 

Common examples include grouping by linear vs nonlinear models (Collins 2006), the number 
of measurement occasions (King et al. 2018), and statistical equivalency (e.g., change scores 
vs. residualized change; see Castro-Schilo and Grimm 2018). The organization we use below 
overlaps in several ways with these examples, and in particular with Bauer and Curran (2019). 
However, it is important to note that in each case, the chosen way of grouping is primarily 
intended to allow the reader to compare and contrast various analytical approaches. In the 
following sections, we briefly summarize the advantages/disadvantages of a series of 
longitudinal models organized into the following groupings: Traditional Models, Modern GLM 
Extensions, Structural Equation Models (SEM), and Advanced SEM (see Figure 2). We note 
that this is not an exhaustive review of each of these methods, and for more in-depth detail we 
do provide the reader with relevant resources. As aptly summarized by Bauer and Curran 
(2019), “…there are many exceptions, alternatives, nuances, ‘what ifs’, and ’but couldn’t you’s 
that aren’t addressed here.” 



 

Figure 2: Longitudinal Models/Data Structures 

4.2 Traditional Models 

Traditional methods for longitudinal analysis primarily focus on modeling mean-level change, 
and how these changes may differ across groups or levels of some other variable. For example, 
is there a difference in average internalizing symptoms obtained across multiple assessments 
between boys and girls? Longitudinal models that focus on mean-level change are also referred 
to as marginal models and examples of specific methods include repeated measures ANOVA, 
ANCOVA and Generalized Estimating Equations (GEEs). Mean-level change models are 
commonly used when data are only available from 2 measurement occasions. For example, 
computing a difference score (e.g., mean internalizing scores at visit 2 - mean internalizing 
scores at visit 1) that can be used as an outcome in a subsequent GLM analysis (e.g., paired-
samples t-test, repeated measures ANOVA) to test for differences in patterns of change over 
time and between groups. Additionally, the longitudinal signed-rank test, a nonparametric 
alternative to the paired t-test, can be a useful tool for analyzing non-normal paired data. 
Another common approach, often used in pre-/post-design studies but can be used with ABCD 
Study data, is to use residualized change score analysis to assess the degree of change in a 
variable, while controlling for its initial level (Castro-Schilo and Grimm 2018). 

For example, to examine change in cortico-limbic connectivity among ABCD participants, 
(Brieant et al. 2021) regressed cortico-limbic connectivity at the year 2 follow-up on baseline 
cortico-limbic connectivity, which allowed the authors to examine the associations between 
negative life events and the variance of cortico-limbic connectivity unexplained by baseline 
connectivity. Similarly, Romer and Pizzagalli (2021) used a residualized-change model to 
examine the bidirectional influences of executive functioning and a general psychopathology 
factor ‘p’ across the first two years of the ABCD Study. Both studies were able to conclude 



associations between their constructs of interest that could not be accounted for by prior 
frequencies at baseline. 

Traditional longitudinal models, such as residualized change score models, can be useful in 
some contexts (e.g., two measurement occasions), but overall, their practical utility for 
answering questions about developmental processes is limited. Perhaps most notably, these 
models do not allow for characterizing patterns of within-person change. This is a particularly 
important limitation since most psychological theories posit within-person processes (i.e., what 
will happen within a given individual). As such, traditional approaches often correspond poorly 
with most theoretical models of change and a failure to disaggregate between-person and 
within-person effects can result in consequential errors of inference (e.g., ecological fallacy; 
Curran and Bauer 2011). Moreover, even determining which of these procedures to use for 
comparing change over two time points across groups can be surprisingly complicated. A 
particularly vexing example is that of imbalanced baseline scores (i.e., when baseline scores 
are correlated with a covariate of interest), which can produce different conclusions across 
methods (e.g., see Littlefield 2023, for a review). Given these shortcomings, and the complexity 
of the issues surrounding some of these methods, it is typically recommended that researchers 
make use of more modern approaches for analyzing longitudinal data and preferably make use 
of data collected across three or more time points, as is currently true for many ABCD Study 
assessments. 

4.3 Modern GLM Extensions 

Modern approaches to LDA have advanced beyond traditional methods by offering greater 
flexibility and a more in-depth understanding of within-person and between-person variability. 
Generalized Estimating Equations (GEE), Linear Mixed Models (LMM), Generalized Linear 
Mixed Models (GLMM), and Autoregressive Cross-Lagged Panel Models (ARCL) are examples 
of such contemporary techniques. GEE, an extension of Generalized Linear Models, combines 
the generalized linear model for non-normal outcomes with repeated measures and is suitable 
for analyzing correlated longitudinal data and modeling population-averaged effects. For 
example, Van Dijk et al. (2021) used GEE to obtain relative risks for psychiatric diagnoses 
among children in the ABCD Study with a family history of depression and used the ABCD 
Study sampling weights to generalize prevalence rates among 9 and 10-year-olds across the 
US. 

LMMs, also known as multilevel or hierarchical linear models, facilitate the simultaneous 
analysis of within-person and between-person variability, making them ideal for nested data 
structures or repeated measures. Within the ABCD Study, researchers may want to consider 
nesting by individual, family (i.e., siblings or twins), school or district, and/or site. GLMMs further 
extend the LMM framework to accommodate non-normal response variables, such as binary, 
count, or ordinal data, such as the use of ABCD data on substance use (e.g., Martz et al. 2022), 
screen media use (Lees et al. 2020), and microstructure of the brain (Palmer et al. 2022). 

Finally, ARCL models are used to investigate reciprocal relationships between variables over 
time, as they estimate both autoregressive and cross-lagged effects, although ARCL models are 
relatively less useful for teasing apart between-person and within-person sources of variances; 
see (Curran & Hancock, 2021). 

The strengths of these modern methods lie in their ability to account for individual differences, 
within-person change, and time-varying predictors, thereby providing a more comprehensive 
understanding of complex relationships in longitudinal data. Despite these advantages, modern 
approaches may require more complex modeling assumptions and higher computational 



demands compared to traditional methods. Additionally, proper model specification and the 
interpretation of results can be more challenging, especially in cases of high multicollinearity or 
missing data. However, modern longitudinal analysis methods have generally surpassed 
traditional methods in addressing a wider range of research questions, accommodating diverse 
data structures, and elucidating the intricate dynamics of developmental processes. 

4.4 Structural Equation Modeling (SEM) 

Structural Equation Modeling (SEM) is a flexible modeling framework that integrates elements of 
path analysis and confirmatory factor analysis (CFA) to examine complex relationships between 
a set of observable variables and latent constructs (Hair et al. 2021). The integration of 
structural (regression) and measurement (CFA) components within a unified framework 
supports a theory-driven approach that allows researchers to rigorously test hypothesized 
relationships among variables of interest and their underlying causes (Hair Jr et al. 2021; 
Raykov & Marcoulides 2012). Over the years, the flexibility of the SEM framework has evolved 
to become particularly adept for modeling autoregressive processes (which often assume 
underlying stationarity) and growth processes which accommodate both, mean trajectories and 
individual differences in them (McArdle 2009; Little 2013). 

Longitudinal SEM techniques share many similarities with mixed-effects methods and research 
demonstrates their mathematical equivalence in many situations (Curran 2003; Mehta and 
Neale 2005). However, these related approaches often cater to distinct theoretical and 
analytical needs. For instance, mixed-effects techniques are an extension of the regression 
framework and often excel when working with complex data structures such as multiple levels of 
nesting, small samples, and non-equidistant time points (McNeish and Matta 2018; Hedeker 
and Gibbons 2006). Alternatively, applying SEM methods to longitudinal analysis provides a 
flexible means for modeling the underlying process of change. It also addresses several 
challenges faced by competing approaches, including the ability to accommodate intricate error 
structures and deal effectively with missing data, as well as the implementation of numerous 
modeling extensions (McNeish and Matta 2018); Curran and Hancock 2021). These models 
have grown increasingly popular for modeling longitudinal outcomes particularly due to their 
ability to build statistical models that match some particular underlying theory (Serang, Grimm, 
and Zhang 2019). 

Considering the variety of available techniques, it can be helpful to classify longitudinal SEM, 
broadly (if not coarsely), into variable-centered, person-centered, and hybrid analyses, each 
with unique strengths and limitations. Variable-centered analyses (e.g., latent growth curves 
[Curran 2003], latent change scores [McArdle and Hamagami 2001], latent state-trait models 
[Geiser and Lockhart 2012]) are primarily concerned with understanding covariation among 
variables at the group level and characterizing population-level patterns of change, while 
person-centered analyses (e.g., latent class and latent transition models) identify distinct 
subgroups or patterns within the data (Muthén and Muthén 2000; Woo et al. 2024; Howard and 
Hoffman 2018). Hybrid models combine these perspectives to offer a comprehensive analysis of 
latent subgroups and growth parameter relationships (Morin et al. 2018; Lubke and Muthén 
2005). The choice between these approaches is primarily driven by the research question, data 
structure, and relevant underlying assumptions. 

4.5 Variable-centered models 

One key application of the SEM framework to the analysis of longitudinal data is the latent 
growth curve model (LGCM). This is a variable-centered approach that characterizes average 
group trajectories and individual variations (random effects) in an outcome over time (Curran 



2003). These models are similar to their linear mixed effects counterpart in many ways, with the 
main conceptual difference being that LGCM includes a repeatedly measured outcome in the 
model as a function of time (closely resembling a standard CFA approach), rather than as an 
explanatory variable (as in a standard regression approach; McNeish and Matta 2018). 
Specifically, observed scores at each time point are treated as indicator variables with their 
factors loading scaled to reflect a hypothesized pattern of change (e.g., loadings of 0, 1, and 2 
would assume equidistant, linear change). Latent intercepts (initial levels) and slopes (rates of 
change) are estimated, along with their variances and covariance to capture common trends 
and individual deviations over time. This method was used in a recent study by Trevino et al. 
(2023) to show a decreasing trajectory of parent-reported externalizing behaviors from ages 9-
12 among youth taking part in the ABCD Study. This study also examined hypothesized 
predictors of the growth trajectory intercept and slope factors, highlighting a particular strength 
of these models–– their flexibility and extensibility. As an example, Roy et al. (2024) used 
publicly available data from the ABCD Study and several other large-scale datasets to explore 
bivariate (parallel process) relationships between white matter pathways and literacy over time. 
Beyond these examples, LGCMs can be extended in numerous ways, including to compare 
rates of growth across groups, investigate the consequences of change, and incorporate time-
invariant or time-varying covariates, to highlight only a few (for a more detailed treatment of 
LGCM applications and methodologies (refer to Preacher et al. 2010; Preacher 2018; Curran et 
al. 2010). 

The latent change score model (LCSM) is a variable-centered approach uniquely tailored for 
analyzing temporal variations in how a construct changes over time (McArdle and Nesselroade 
1994; McArdle and Hamagami 2001). These models share many features with growth curve 
analysis, but with a more explicit focus on how change occurs between measurement occasions 
(Serang, Grimm, and Zhang 2019; McArdle 2009). Specifically, LCSM estimates a series of 
latent variables to model change in an outcome from one time point to the next, as a function of 
scores on that outcome at prior time points (McArdle and Hamagami 2001; Ghisletta and 
McArdle 2012). Some types of LCSM estimate two underlying latent factors: a constant change 
factor that remains fixed over time, and a proportional change factor that adjusts for previous 
scores. By disaggregating change into constant and proportional components, this approach 
facilitates a more nuanced understanding of whether prior changes in a given process are 
related to future changes in the same process (Serang et al., 2019; Kievit et al. 2018). 
Expanding upon the capabilities of this framework, LCSM also allows for comprehensive 
multivariate analyses that can facilitate investigations into how change in one construct is 
associated with change in another construct. The appeal of this approach is evidenced by 
several recent studies that have used data from the ABCD Study to explore bivariate 
associations between brain development and changes in several mental and physical health 
indicators (e.g., Wiker et al. 2023; Rapuano et al. 2022; Beck et al. 2023; Nweze et al. 2023; 
Mewton et al. 2023). 

Latent State-Trait Models (LSTM) offer another variable-centered approach to longitudinal 
analysis that also allows for the estimation of patterns of change over time. Unlike LGCM, which 
conceptualizes change as a function of time, and LCSM, which views change through 
sequential measurements, this approach disaggregates observed behaviors into distinct stable 
(trait) and occasion-specific (state) components (Kenny and Zautra 2001; Steyer et al. 2015). 
Based on LST theory (Steyer, Schmitt, and Eid 1999; Steyer, Ferring, and Schmitt 1992), these 
models hold that scores on a repeated measures outcome can be partitioned into an enduring 
latent trait variable that reflects between-individual differences, and a transient latent state 
residual that represents situational influences (Stadtbaeumer, Kreissl, and Mayer 2022; Geiser 
and Lockhart 2012). Beyond parsing out these key variance components, LSTM can be 



extended in many ways, such as by incorporating autoregressive effects to capture relative 
stability and the influence of past states on future responses (i.e. carry-over effects; Cole, 
Martin, and Steiger 2005; Eid et al. 2017; Geiser and Lockhart 2012). The merits of this 
approach are highlighted in a recent review by Sanchez-Alonso and Aslin (2020) focused on 
strategies for modeling neurobehavioral development. These study authors encourage 
researchers to leverage data from the ABCD Study and other large-scale longitudinal and 
publicly available datasets and to apply state-trait methods to map neural and behavioral 
trajectories in youth (for a more detailed overview of these models, see Kenny and Zautra 
2001); Steyer, Geiser, and Loßnitzer 2023; Steyer, Schmitt, and Eid 1999). In general, while 
many commonalities and important features are shared across different variable-centered 
approaches, selecting the most appropriate statistical model for assessing change hinges on 
the specific theoretical model of change and what is intended to be learned from the model (see 
Kievit et al. 2018; McArdle 2009; Ghisletta and McArdle 2012, for discussion), which is critical 
for informing the interpretation and applicability of the research findings. 

4.6 Person-centered models 

Despite the flexibility afforded by variable-centered analysis, these methods are not generally 
equipped to capture underlying developmental trajectories that are unique to distinct clusters of 
individuals. This limitation can be particularly notable for research that aims to characterize 
heterogeneous developmental processes. Person-centered approaches, including latent 
transition analysis and latent class growth analysis, address this limitation by identifying 
subgroups of individuals who share similar patterns of change. These models can reveal 
meaningful subpopulations and help researchers understand the factors that contribute to 
differences in developmental trajectories. For example, taking advantage of the large sample 
size of the ABCD Study, Xiang et al. (2022) found evidence of four subgroups of youth with 
unique longitudinal patterns of depressive symptoms over time and identified risk factors that 
were differentially associated with the various trajectories. 

The use of such models allows for a more nuanced understanding of the associations between 
risk factors and change in symptomatology, as opposed to a snapshot of symptomatology at a 
single time point. Despite a range of potential model specifications for longitudinal mixture 
modeling, person-centered approaches tend to use parameterizations that default to settings 
found in popular software packages (e.g., Mplus). It has recently been demonstrated (see 
McNeish and Harring 2021) that the use of such specifications tends to identify the so-called 
“cat’s cradle” solution (see Sher, Jackson, and Steinley 2011) that consists of “…(a) a 
consistently ‘low’ group, (b) an ‘increase’ group, (c) a ‘decrease’ group, and (d) a consistently 
‘high’ group” (Sher et al., 2011, p. 322). Indeed, Xiang et al. (2022) describe their four-group 
solution as follows: “Of all participants, 536 (10.80%) were classified as increasing, 269 (5.42%) 
as persistently high, 433 (8.73%) as decreasing, and 3724 (75.05%) as persistently low” (Xiang 
et al. 2022, p. 162). Although Sher et al. (2011) cautioned that groups from these trajectory-
based approaches should not be over-reified, this practice also remains common (e.g., Hawes 
et al. 2016; Hawes et al. 2018). Thus, though person-centered approaches can, in theory, help 
researchers understand the factors that contribute to differences in developmental trajectories, 
researchers should more thoughtfully consider alternative specifications (see Littlefield et al. 
2010, as an example) and be especially skeptical when default specifications identify these four 
prototypic groups. 

Hybrid approaches, such as growth mixture (jung 2008; Muthén and Muthén 2000) and factor-
mixture (Lubke and Muthén 2005; Lubke and Muthén 2007) modeling, combine aspects of both 
variable-centered and person-centered models, allowing for the identification of latent 
subgroups while also modeling relationships among growth parameters. This combination 



provides a more comprehensive understanding of longitudinal data by capturing both within- 
and between-person variability. However, hybrid models can be more complex, necessitating 
careful model specification, selection, and interpretation. Additionally, these methods may 
require larger sample sizes to ensure the stability and accuracy of results. 

In summary, SEM approaches offer powerful tools for LDA, enabling researchers to investigate 
complex relationships, individual differences, and change dynamics over time. The choice 
between variable-centered, person-centered, and hybrid approaches depends on the research 
objectives and the nature of the data. Despite their limitations, these models have greatly 
advanced our understanding of developmental processes and the factors that contribute to 
individual differences in change trajectories. 

4.7 Advanced Structural Equation Models 

Advanced SEM approaches, such as the RI-CLPM and LCM-SR models, have emerged to 
provide a clearer understanding of important research questions and data structures in 
longitudinal analysis. These advanced models extend traditional SEM techniques, enabling 
researchers to disentangle within-person and between-person effects, as well as capture 
additional time-specific dependencies and associations that may not be accounted for by the 
latent growth factors. 

The RI-CLPM enhances the traditional cross-lagged panel model by incorporating random 
intercepts, which allow for the separation of stable individual differences from the dynamic 
within-person associations between variables over time. Within-person variance in these models 
is captured by a series of latent variables that reflect time specific variance (i.e., the residual 
variance from the random intercept). These time-specific variables are referred to as structured 
residuals. Distinguishing between-person variance subsumed by the random intercept from the 
structured residuals is particularly valuable for understanding the time-specific effects of one 
variable on another, while accounting for the influence of individual differences. However, RI-
CLPM may require larger sample sizes to ensure stability and accuracy of the estimates and 
can be computationally demanding. Using three waves of ABCD Study data, Kulisch et al. 
(2023) found a prospective association between psychopathology and childhood obesity as well 
as between childhood obesity and later eating behavior. The authors also showed that 
reciprocal associations were overestimated when stable, interindividual trait differences were 
not included in the model (i.e., via the random intercept). 

LCM-SR, on the other hand, extends the RI-CLPM by including additional growth factors, such 
as a random linear slope. That is, the LCM-SR is a hybrid between a latent growth model and 
CLPM. This approach allows for a more comprehensive understanding of within-person change 
dynamics and factors influencing change over time. By including structured residuals, LCM-SR 
can capture additional time-specific relationships that are not explained by the latent growth 
factors. However, even more so than the RI-CLPM, LCM-SR comes with increased model 
complexity and requires careful specification and interpretation. 

In conclusion, advanced SEM approaches for LDA provide valuable tools for addressing 
complex research questions and data structures. While they offer more nuanced insights into 
within-person change dynamics and the influence of individual differences, these models also 
come with certain limitations, such as the necessity of multiple assessments (e.g., four or more 
for LCM-SR), increased complexity, computational demands, and the need for careful model 
specification and interpretation. As with any statistical method, researchers should carefully 
consider their research objectives, data characteristics, and the assumptions of each model 
when selecting the most appropriate advanced SEM approach for longitudinal analysis. Given 



that these modeling approaches necessitate more waves of data, they are not yet commonly 
used with ABCD Study data. We anticipate that as more waves of ABCD data are publically 
released, these models can be used to address some of the pitfalls of the more traditional 
methods. 

4.8 Longitudinal Analysis of Neuroimaging Data 

Neuroimaging data, characterized by its large scale, spatial structure and binary data formats, 
requires the use of specialized software for effective analysis. Fortunately, there are now 
several freely available software packages that provide options for statistical modeling of brain 
imaging data, thus facilitating analysis of the brain’s function or structure at every voxel or vertex 
in an image (see Fig. 3). However, the most widely used packages have only rudimentary 
support for longitudinal data. Prominent software solutions such as SPM 
(https://www.fil.ion.ucl.ac.uk/spm) and FSL (https://fsl.fmrib.ox.ac.uk) packages offer limited 
support in analyzing longitudinal data due to their use of strong assumptions. SPM assumes a 
common longitudinal correlation structure over space, and FSL requires balanced designs and 
relies on the assumption of compound symmetry. Despite these limitations, there is a steady 
growth in the development of neuroimaging tools that provide for comprehensive longitudinal 
data analysis, typically via commonly adopted modeling approaches such as LMMs marginal 
models. These emerging tools are equipped to handle more complex scenarios, including 
unbalanced designs and random covariate effects, among others. 

AFNI (https://afni.nimh.nih.gov/), a well-established tool in neuroimaging, integrates 3dLMEr 
Chen et al. (2013); https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dLMEr.html which 
adopts an LMM-based approach by providing access to the advanced capabilities of R’s lme4’s 
lmer function. For surface-based data, Freesurfer (https://surfer.nmr.mgh.harvard.edu/) provides 
the linear mixed effects (LME) package for modelling longitudinal data (Bernal-Rusiel, Greve, et 
al. 2013; https://surfer.nmr.mgh.harvard.edu/fswiki/LinearMixedEffectsModels). This tool is able 
to apply spatial regularization of LMM parameters with surface-based ROIs to improve stability 
(Bernal-Rusiel, Reuter, et al. 2013). 

For imaging data, LMM’s present a significant computational challenge, not only because they 
require iterative optimization but also because the computations cannot be vectorized as 
efficiently compared to ordinary least squares. To overcome this challenge, The Big Linear 
Mixed Models (BLMM, https://github.com/NISOx-BDI/BLMM) software addresses this by using 
Python’s broadcasting operations to estimate LMM’s as efficiently as possible (Maullin-Sapey 
and Nichols 2022; Maullin-Sapey and Nichols 2021). BLMM further separates the computation 
of sufficient statistics and parameter estimation, allowing sensitive image data to remain private 
if needed. 

A different yet efficient approach is used with Fast and Efficient Mixed-effects Analysis (FEMA, 
https://github.com/cmig-research-group/cmig_tools), which uses a non-iterative regression 
estimator of the LMM variance components plus variance parameter quantization. This allows 
vectorization within groups of voxels that share the same variance parameters (Parekh et al. 
2021). While this method uses different approximations, the authors have shown it provides 
results that closely match a traditional LMM implementation. 

An alternative method for modeling longitudinal data is the marginal model. This approach 
differs from others by modeling only the population-level factors and covariates rather than 
explicitly modeling individual intercepts and slopes. It employs a flexible intra-subject covariance 
model to account for residual dependence. Like the LMM, it allows for unbalanced designs and 
singleton subjects, and it implicitly measures any covariance that would otherwise be explained 



by random covariates. In a marginal model, a “working covariance” matrix is utilized. This matrix 
does not need to be accurately modelled and may even be constructed under the potentially 
incorrect assumption that the errors are independent. In this case, parameter estimation 
reduces to ordinary least squares, but remains consistent. A crucial component of this method is 
the use of a robust “sandwich estimator” for standard errors, which accounts for any 
dependence not captured by the working covariance. The Sandwich Estimator (SwE) is a 
toolbox for SPM (https://www.nisox.org/Software/SwE, including CIFTI support) and FSL 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Swe) that provides marginal model inference using an 
independence working covariance matrix (Guillaume et al. 2014). 

  

5. Discussion 

As we enter the era of large-scale longitudinal investigations, it is essential to critically examine 
the various analytical methods that can be employed to glean insights from these rich datasets. 
The complex nature of longitudinal data demands sophisticated and well-suited methodologies 
to accurately address research questions and minimize biases. This paper aimed to provide an 
overview of diverse longitudinal analysis techniques, with a particular emphasis on their 
application to extensive longitudinal studies such as the ABCD Study. Beyond contributing to 
the ever-growing body of knowledge on LDA, we hope this manuscript also serves as a valuable 
resource for researchers seeking to optimize the use of large-scale longitudinal investigations in 
advancing our understanding of human development and behavior. In this discussion, we will 
focus on the key findings and recommendations of our review and discuss potential innovations 
that can further enhance the utility of these methods. 

We began by addressing fundamental concepts and considerations in longitudinal research that 
are essential for generating accurate and meaningful insights into developmental processes. 
Concepts such as vulnerable periods, developmental disturbances and snares, or cascade and 
experience effects (among many others), are instrumental in shaping the design, analysis, and 
interpretation of longitudinal studies. Together, these concepts provide a framework for 
understanding the mechanisms underlying the course of development, while also accounting for 
the complex interplay between individual development and the influence of environmental 
factors. By considering the intricate relationships among these factors, researchers can better 
identify the critical time periods, situations, and contexts that contribute to individual differences 



in developmental outcomes. This awareness enables more precise inferences regarding the 
causal relationships between exposures and outcomes, ultimately leading to more robust and 
meaningful findings that can help facilitate the translation of research findings into practical 
applications in clinical and public health settings. 

We also discussed some of the opportunities, challenges, and pitfalls that arise when working 
with longitudinal data. Key issues include selecting appropriate methods to account for the 
intricacies of longitudinal data, addressing missing data in a way that minimizes biases, and 
determining suitable longitudinal data structures that align with research questions and context. 
To address these challenges, researchers should carefully consider issues such as study 
design, selection of methods that account for both within- and between-person sources of 
variance, and employing modern techniques, (e.g., FIML, multiple imputation) for handling 
missing data. By adhering to best practices in longitudinal research and remaining vigilant of 
potential pitfalls, researchers can effectively harness the power of longitudinal data to maximize 
the potential of their investigations and gain valuable insights into complex developmental 
processes, individual differences, and the underlying mechanisms that drive change over time. 

The adoption of open science practices, including the sharing of analysis code and worked 
examples, is increasingly recognized as essential for advancing the transparency and 
reproducibility of research, especially in complex areas such as longitudinal modeling. By 
making code available, researchers enable others to scrutinize, replicate, and build upon their 
work, thereby fostering a clearer understanding of how different types of longitudinal models are 
constructed and applied. This practice is particularly beneficial in large-scale studies like the 
ABCD Study, where multiple research teams may analyze the same dataset using varying 
methodologies. Code sharing allows for direct comparison of approaches, helping to elucidate 
why different analyses of the same data might yield divergent results. 

In addition to code sharing, it is crucial for researchers to provide comprehensive details about 
their modeling choices. This includes specifying the type of longitudinal model used (e.g., 
mixed-effects models, growth curve models, or DSEM), the selection of covariates, and the 
handling of missing data, as well as any assumptions or constraints applied during the analysis. 
Clear reporting of these aspects ensures that other researchers can accurately interpret the 
findings and replicate the study if necessary. By embracing these open science practices, the 
research community can work towards more robust, transparent, and replicable longitudinal 
research, ultimately leading to stronger and more reliable scientific conclusions. 

The final section, along with associated code and additional resources made available online, 
aims to serve as a resource for researchers seeking to understand and implement various 
longitudinal panel models. By providing an overview of different approaches, their strengths and 
limitations, and key considerations for their use, we hope to facilitate the selection of appropriate 
models tailored to specific research questions and data structures. It is essential for researchers 
to consider their research objectives, the characteristics of their data, and the assumptions 
underlying each model when choosing the most suitable approach for longitudinal analysis. 

We encourage researchers to consult the cited literature and online materials for further 
guidance in selecting and implementing longitudinal models when using the ABCD Study 
dataset. As the field continues to advance, we anticipate the emergence of new methods and 
refinements to existing approaches, further expanding the toolkit available to researchers for the 
analysis of longitudinal data. By staying informed about developments in this area and critically 
evaluating the appropriateness of different models for their research questions, researchers can 
ensure that their longitudinal analyses are both rigorous and informative. Notably, in this vast 
and continually evolving field, with numerous models and approaches available to address a 



wide range of research questions, no single model is universally applicable or without 
limitations. The diversity of methods ensures that researchers can find an appropriate tool for 
their specific needs. By familiarizing themselves with the various types of longitudinal models, 
researchers can more effectively navigate the complexities of longitudinal data and contribute 
valuable insights into the developmental processes and individual differences that shape human 
experience. 
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